

Neuron® C
Reference

Guide
Revision 3

C o r p o r a t i o n

078-0140-01B

Echelon, LON, LonBuilder, LonMaker, LonTalk, LONWORKS, Neuron,
NodeBuilder, 3120, 3150, and the Echelon logo are trademarks of Echelon
Corporation registered in the United States and other countries. LONMARK and
ShortStack are trademarks of Echelon Corporation.
Touch Memory is a trademark of the Dallas Semiconductor Corp.
Other brand and product names are trademarks or registered trademarks of their
respective holders.

Neuron Chips, Serial LonTalk® Adapters, and other OEM Products were not
designed for use in equipment or systems which involve danger to human health
or safety or a risk of property damage and Echelon assumes no responsibility or
liability for use of these products in such applications.
Parts manufactured by vendors other than Echelon and referenced in this
document have been described for illustrative purposes only, and may not have
been tested by Echelon. It is the responsibility of the customer to determine the
suitability of these parts for each application.

ECHELON MAKES NO REPRESENTATION, WARRANTY, OR
CONDITION OF ANY KIND, EXPRESS, IMPLIED, STATUTORY, OR
OTHERWISE OR IN ANY COMMUNICATION WITH YOU, INCLUDING,
BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR ANY
PARTICULAR PURPOSE, NONINFRINGEMENT, AND THEIR
EQUIVALENTS.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of Echelon
Corporation.

Document No. 29350

Printed in the United States of America.
Copyright ©1990-2001 by Echelon Corporation

Echelon Corporation
550 Meridian Avenue
San Jose, CA. USA
95126
www.echelon.com

Preface

This revision of the Neuron® C Reference Guide describes
Neuron C Version 2.

This manual is a companion piece to the Neuron C
Programmer's Guide. It provides reference information for
writing programs using Neuron C. Neuron C is a programming
language based on ANSI C, with extensions to support run-
time features provided in the Neuron Chip firmware.

iv Preface

Audience
The Neuron C Reference Guide is intended for application programmers who
are developing LON® applications. Readers of this guide are assumed to be
familiar with the ANSI C programming language, and have some C
programming experience.

For a complete description of ANSI C, consult the following references:

• American National Standard X3.159-1989, Programming Language C, D.F.
Prosser, American National Standards Institute, 1989.

• Standard C: Programmer’s Quick Reference, P. J. Plauger and Jim Brodie,
Microsoft Press, 1989.

• C: A Reference Manual, Samuel P. Harbison and Guy L. Steele, Jr., 3rd
edition, Prentice-Hall, Inc., 1991.

• The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie,
2nd edition, Prentice-Hall, Inc., 1988.

Content
This guide provides a complete reference section for the Neuron C Version 2
language.

Related Manuals
The NodeBuilder® User’s Guide lists and describes all tasks related to
LONWORKS

® application development using the NodeBuilder Development
Tool. Refer to that guide for detailed information on the user interface and
features of the NodeBuilder tool.

The LonBuilder® User’s Guide lists and describes all tasks related to
LONWORKS application development using the LonBuilder Development Tool.
Refer to that guide for detailed information on the user interface and features
of the LonBuilder tool.

The Neuron C Programmer’s Guide outlines and discusses the key aspects of
developing a LONWORKS application and explains the key concepts of
programming in Neuron C Version 2 through the use of code fragments and
examples.

The NodeBuilder Errors Guide lists and describes all warning and error
messages related to the NodeBuilder software.

The LonMaker® User’s Guide lists and describes all tasks related to
LONWORKS

® network development and maintenance using the LonMaker
Integration Tool. Refer to that guide for detailed information on the user
interface and features of the LonMaker tool.

The Gizmo 4 User's Guide describes the Gizmo 4 I/O board hardware and
software. Refer to that guide for detailed information on the hardware and
software interface of the Gizmo 4.

Neuron C Reference Guide v

Typographic Conventions for Syntax
This manual uses the following typographic conventions for syntax:

Type Used For Example

boldface type keywords network
 literal characters {

Italic type abstract elements identifier

square brackets optional fields [bind-info]

vertical bar a choice between input | output
 two elements

For example, the syntax for declaring a network variable is shown below:

network input | output [netvar modifier] [class] type [bind-info] identifier

Punctuation other than square brackets and vertical bars must be used
where shown (quotes, parentheses, semicolons, etc.).

Code examples appear in the Courier font:
#include <mem.h>

unsigned array1[40], array2[40];

// See if array1 matches array2
if (memcmp(array1, array2, 40) != 0) {

// The contents of the two areas do not match
}

vi Preface

Contents
Preface iii

Audience iv
Content iv
Related Manuals iv
Typographic Conventions for Syntax v
Contents vi
Neuron C Overview ix

Chapter 1 Predefined Events 1-1
Introduction to Predefined Events 1-2
Event Directory 1-3

Chapter 2 Compiler Directives 2-1
Compiler Directives 2-2

Chapter 3 Functions 3-1
Introduction 3-2

Overview of Neuron C Functions 3-3
Execution Control 3-4
Network Configuration 3-4
Integer Math 3-5
Floating-point Math 3-6
Strings 3-7
Utilities 3-7
Input/Output 3-8

Signed 32-Bit Integer Support Functions 3-9
Binary Arithmetic Operators 3-11
Unary Arithmetic Operators 3-11
Comparison Operators 3-11
Miscellaneous Signed 32-bit Functions 3-12
Integer Conversions 3-12
Conversion of Signed 32-bit to ASCII String 3-12
Conversion of ASCII String to Signed 32-bit 3-12
Signed 32-bit Performance 3-13

Floating-point Support Functions 3-13
Binary Arithmetic Operators 3-16
Unary Arithmetic Operators 3-17
Comparison Operators 3-17
Miscellaneous Floating-point Functions 3-18
Floating-point to/from Integer Conversions 3-18
Conversion of Floating-point to ASCII String 3-18
Conversion of ASCII String to Floating-point 3-19
Floating-Point Performance 3-19

Using the NXT Neuron C Extended Arithmetic Translator 3-20
Function Directory 3-21

Chapter 4 Timer Declarations 4-1
Timer Object 4-2

Chapter 5 Configuration Property and Network Variable Declarations 5-1
Introduction 5-2
Configuration Property Declarations 5-3

Configuration Property Modifiers (cp-modifiers) 5-4

Neuron C Reference Guide vii

Configuration Property Instantiation 5-6
Device Property Lists 5-6

Network Variable Declarations Syntax 5-7
Network Variable Modifiers (netvar-modifier) 5-8
Network Variable Classes (class) 5-9
Network Variable Types (type) 5-10
Configuration Network Variables 5-11
Network Variable Property Lists (nv-property-list) 5-11
Network Variable Connection Information (connection-info) 5-13

Accessing Property Values from a Program 5-16
Chapter 6 Functional Block Declarations 6-1

Introduction 6-2
Functional Block Declarations Syntax 6-3

Functional Block Property Lists (fb-property-list) 6-6
Related Data Structures 6-8
Accessing Members and Properties of a Functional Block from a Program 6-8

Chapter 7 Built-in Variables and Objects 7-1
Introduction to Built-in Variables and Objects 7-2

Built-in Variables 7-3
Built-in Objects 7-10

Chapter 8 I/O Objects 8-1
I/O Objects Syntax 8-2

Appendix A Syntax Summary A-1
Syntax Conventions A-2
Neuron C External Declarations A-3
Variable Declarations A-4

Declaration Specifiers A-5
Timer Declarations A-5
Type Keywords A-6
Storage Classes A-6
Type Qualifiers A-7
Enumeration Syntax A-7
Structure/Union Syntax A-8
Configuration Property Declarations A-9
Network Variable Declarations A-9
Connection Information A-10

Declarator Syntax A-11
Abstract Declarators A-12

Task Declarations A-12
Function Declarations A-13

Conditional Events A-14
Complex Events A-14

I/O Object Declarations A-15
I/O Options A-17

Functional Block Declarations A-17
Property List Declarations A-19
Statements A-20
Expressions A-22

Primary Expressions, Built-in Variables, and Built-in Functions A-25
Implementation Limits A-27

Appendix B Reserved Words B-1

viii Preface

Reserved Words List B-2

Neuron C Reference Guide ix

Neuron C Overview
Neuron C is a programming language based on ANSI C that is designed for
Neuron Chips and Smart Transceivers. It includes network communication,
I/O, and event-handling extensions to ANSI C, which make it a powerful tool
for the development of LONWORKS applications.

Neuron C implements all the basic ANSI C types, and type conversions as
necessary. In addition to the ANSI C data constructs, Neuron C provides
some unique data elements. Network variables are fundamental to Neuron C
and LONWORKS applications. Network variables are data constructs that
have language and system firmware support to provide something that looks
like a variable in a C program, but has additional properties of propagating
across a LONWORKS network to or from one or more other devices on that
network. The network variables make up part of the device interface for a
LONWORKS device.

Configuration properties are Neuron C data constructs that are another part
of the device interface. Configuration properties allow the device’s behavior
to be customized using a network tool such as the LonMaker Integration Tool
or a customized plug-in created for the device.

Neuron C also provides a way to organize the network variables and
configuration properties in the device into functional blocks, each of which
provides a collection of network variables and configuration properties, that
are used together to perform one task. These network variables and
configuration properties are called the functional block members.

Each network variable, configuration property, and functional block is
defined by a type definition contained in a resource file. Network variables
and configuration properties are defined by network variable types and
configuration property types. Functional blocks are defined by functional
profiles (which also called functional profile templates).

Network variables, configuration properties, and functional blocks in Neuron
C can use standardized, interoperable types. The use of standardized data
types promotes the interconnection of disparate devices on a LONWORKS
network. For configuration properties, the standard types are called
standard configuration property types (SCPTs). For network variables, the
standard types are called standard network variable types (SNVTs). For
functional blocks, the standard types are called standard functional profile
templates (SFPTs). If you cannot find standard types or profiles that meet
your requirements, Neuron C also provides full support for user network
variable types (UNVTs), user configuration property types (UCPTs), and user
functional profile templates (UFPTs).

Neuron C is designed to run in the environment provided by the Neuron
system firmware. This firmware provides an event-driven scheduling system
as part of the Neuron C language’s run-time environment.

Neuron C also provides a lower-level messaging service integrated into the
language in addition to the network variable model, but the network variable
model has the advantage of being a standardized method of information
interchange, whereas the messaging service is not standardized. The use of
network variables, both standard types and user types, promotes
interoperability between multiple devices from multiple vendors. The lower-
level messaging service allows for proprietary solutions.

x Preface

Another Neuron C data object is the timer. Timers can be declared and
manipulated like variables, and when a timer expires, the system firmware
automatically manages the timer events and notifies the program of those
events.

Neuron C provides many built-in I/O objects. These I/O objects are
standardized I/O “device drivers” for the Neuron Chip or Smart Transceiver
I/O hardware. Each I/O object fits into the event-driven programming model.
A function-call interface is provided to interact with each I/O object.

The rest of this reference guide will discuss these various aspects of Neuron C
in much greater detail, accompanied by many examples.

1
Predefined Events

This chapter provides reference information on predefined
events.

1-2 Predefined Events

Introduction to Predefined Events
Predefined events are represented by unique keywords, listed in the table
below. Some predefined events, such as the I/O events, may be followed by a
modifier that narrows the scope of the event. If the modifier is optional and
not supplied, any event of that type qualifies. The following table lists events
by functional group.

System / Scheduler Network Variables

offline nv_update_completes

online nv_update_fails

reset nv_update_occurs

timer_expires nv_update_succeeds

wink

 Messages

Input/Output msg_arrives

io_changes msg_completes

io_in_ready msg_fails

io_out_ready msg_succeeds

io_update_occurs resp_arrives

Sleep

flush_completes

Within a single program, the following predefined events, which reflect state
transitions of the application processor, can appear in no more than one
when clause:

 offline

 online

 reset

 timer_expires (unqualified)

 wink

All other predefined events can be used in multiple when clauses.
Predefined events (except for the reset event) can also be used in any
Neuron C expression.

Neuron C Reference Guide 1-3

Event Directory
The following pages list Neuron C events alphabetically, providing relevant
syntax information and a detailed description of each event.

flush_completes EVENT
flush_completes

The flush_completes event evaluates to TRUE when all outgoing
transactions have been completed and no more incoming messages remain to
be processed. For unacknowledged messages, “completed” means that the
message has been transmitted by the Media Access Control (MAC) layer. For
acknowledged messages, “completed” means that the completion code has
been processed. In addition, all network variable updates have completed.

See also the discussion of sleep mode in Chapter 5 of the Neuron C
Programmer's Guide.

EXAMPLE:

...
flush();
...
when (flush_completes)
{

sleep();
}

io_changes EVENT
io_changes (io-object-name) [to expr | by expr]

The io_changes event evaluates to TRUE when the value read from the I/O
object specified by io-object-name changes state. The change can be one of
three types:

• a change to a specified value

• a change by (at least) a specified amount (absolute value)

• any change (an unqualified change)

The reference value is the value read the last time the change event evaluated
to TRUE. For the unqualified io_changes event, a state change occurs when
the current value is different from the reference value.

A task can access the input value for the I/O object through the input_value
keyword. The input_value is always a signed long.

For bit, byte, and nibble I/O objects, changes are not latched. The change
must persist until the io_changes event is processed. The leveldetect
input object can be used to latch changes that may not persist until the
io_changes event can be processed.

Following are more detailed descriptions of the elements of the above syntax:

io-object-name is the I/O object name (see Chapter 8). I/O objects of
the following input object types can be used in an

1-4 Predefined Events

unqualified change event. The by and to options may
also be used where noted.
bit (to)
byte (by, to)
dualslope (by)
leveldetect (to)
nibble (by, to)
ontime (by)
period (by, to)
pulsecount (by)
quadrature (by)

to expr where expr is a Neuron C expression. The to option
specifies the value of the I/O state necessary for the
io_changes event to become TRUE. (The compiler
accepts an unsigned long value for the expression.
However, each I/O object type has its own range of
meaningful values.)

by expr where expr is a Neuron C expression. The by option
compares the current value with the reference value.
The io_changes event becomes TRUE when the
difference (absolute value) between the current value
and the reference value is greater than or equal to
expr.

 The default initial reference value used for
comparison purposes is zero. You can set the initial
value by calling the io_change_init() function. If an
explicit reference value is passed to io_change_init(),
that value is used as the initial reference value:
io_change_init(io-object-name, value). If no explicit
value is passed to io_change_init(), the I/O object’s
current value is used as the initial value:
io_change_init(io-object-name).

EXAMPLE 1:

IO_0 input bit push_button;

when (io_changes(push_button) to 0)
{
...
}

EXAMPLE 2:

IO_7 input pulsecount total_ticks;

when (io_changes(total_ticks) by 100)
{
...
}

Neuron C Reference Guide 1-5

io_in_ready EVENT
io_in_ready (parallel-io-object-name)

parallel-io-object-name is the parallel I/O object name (see Chapter 8).

The io_in_ready event evaluates to TRUE when a block of data is available
to be read on the parallel bus. The application then calls io_in() to retrieve
the data. (See also the Parallel I/O Interface to the Neuron Chip engineering
bulletin and the Parallel I/O Object in Chapter 8 of this Reference Guide.)

EXAMPLE:

when (io_in_ready(io_bus))
{

io_in(io_bus, &piofc);
}

io_out_ready EVENT
io_out_ready (parallel-io-object-name)

parallel-io-object-name is the parallel I/O object name (see Chapter 8).

The io_out_ready event evaluates to TRUE whenever the parallel bus is in
a state where it can be written to and the io_out_request() function has
been previously invoked (See also the Parallel I/O Interface to the Neuron
Chip engineering bulletin and the Parallel I/O Object in Chapter 8 of this
Reference Guide.)

EXAMPLE:

when (...)
{

io_out_request(io_bus);
}

when (io_out_ready(io_bus))
{

io_out(io_bus, &piofc);
}

1-6 Predefined Events

io_update_occurs EVENT
io_update_occurs (io-object-name)

io-object-name is the I/O object name (see Chapter 8).

The io_update_occurs event evaluates to TRUE when the input object
specified by io-object-name has an updated value. The io_update_occurs
event applies only to timer/counter input object types (dualslope, ontime,
period, pulsecount, and quadrature) as follows:

 I/O Object io_update_occurs evaluates to TRUE after:

 dualslope the A/D conversion is complete

 ontime the edge is detected defining the end of a period

 period the edge is detected defining the end of a period

 pulsecount every 0.8388608 seconds

 quadrature the encoder position changes

An input object may have an updated value that is actually the same as its
previous value. To detect changes in value, use the io_changes event. A
given I/O object cannot be included in when clauses with both
io_update_occurs and io_changes events.

A task can access the updated value for the I/O object through the
input_value keyword. The value input_value is always a signed long.

EXAMPLE:

#include <io_types.h>
ontime_t therm_value; // 'ontime_t' defined in io_types.h
IO_7 input ontime io_thermistor;

when (io_update_occurs(io_thermistor))
{

therm_value = (ontime_t)input_value;
}

Neuron C Reference Guide 1-7

msg_arrives EVENT
msg_arrives [(message-code)]

message-code is an optional integer message code. If this field is
 omitted, the event is TRUE for receipt of any
message.

The msg_arrives event evaluates to TRUE when a message arrives. This
event can be qualified by a specific message code specified by the sender of
the message. See Chapter 4 of the Neuron C Programmer's Guide for a list of
message code ranges. It is preferable to use an unqualified msg_arrives
event followed by a switch statement on the msg_in code.

EXAMPLE:

when (msg_arrives(10))
{

...
}

msg_completes EVENT
msg_completes [(message-tag)]

message-tag is an optional message tag. If this field is omitted, the
event is TRUE for any message.

The msg_completes event evaluates to TRUE when an outgoing message
completes (that is, either succeeds or fails). This event can be qualified by a
specific message tag.

Checking the completion event (msg_completes, msg_fails,
msg_succeeds) is optional by message tag.

If a program checks for either the msg_succeeds or msg_fails event, it must
check for both events. The alternative is to check only for msg_completes.

EXAMPLE:

msg_tag tag_out;
...
msg_out.tag = tag_out;
msg_send();
...
when (msg_completes(tag_out))
{

...
}

1-8 Predefined Events

msg_fails EVENT
msg_fails [(message-tag)]

message-tag is an optional message tag. If this field is omitted, the
event is TRUE for any message.

The msg_fails event evaluates to TRUE when a message fails to be
acknowledged after all retries have been attempted. This event can be
qualified by a specific message tag.

Checking the completion event (msg_completes, or msg_fails in
combination with msg_succeeds) is optional by message tag. If a program
checks for either the msg_succeeds or msg_fails event, it must check for
both events. The alternative is to check only for msg_completes.

EXAMPLE:

msg_tag tag_out;
...
msg_out.tag = tag_out;
msg_send();
...
when (msg_fails(tag_out))
{

...
}

msg_succeeds EVENT
msg_succeeds [(message-tag)]

message-tag is an optional message tag. If this field is omitted, the
event is TRUE for any message.

The msg_succeeds event evaluates to TRUE when a message is successfully
sent (see Table 4.2 in the Neuron C Programmer's Guide for the definition of
success). This event can be qualified by a specific message tag.

Checking the completion event (msg_completes, or msg_fails in
combination with msg_succeeds) is optional by message tag. If a program
checks for either the msg_succeeds or msg_fails event, it must check for
both events. The alternative is to check only for msg_completes.

EXAMPLE:

msg_tag tag.out;
...
msg_out.tag = tag_out;
msg_send();
...
when (msg_succeeds(tag_out))
{

...
}

Neuron C Reference Guide 1-9

nv_update_completes EVENT
nv_update_completes [(network-var)]

nv_update_completes [(network-var1 .. network-var2)]

network-var is a network variable identifier, a network variable
array identifier, or a network variable array element.
A range can be specified with two network variable
identifiers or network variable array elements
separated with a range operator (two consecutive
dots). If the parameter is omitted, the event is TRUE
when any network variable update completes.

The nv_update_completes event evaluates to TRUE when an output
network variable update completes (that is, either fails or succeeds) or a poll
operation completes. Checking the completion event
(nv_update_completes, or nv_update_fails in combination with
nv_update_succeeds) is optional by network variable.

If an array name is used, then each element of the array will be checked for
completion. The event will occur once for each element that has a completion
event. An individual element may be checked with use of an array index.
When nv_update_completes is TRUE, you may examine the
nv_array_index built-in variable (type short int) to obtain the element's
index to which the event applies.

If a network variable range is used, then the network variable at the
beginning of the range must have a lower global index than the network
variable at the end of the range. Each network variable in the range will be
checked for completion until the first such network variable with an event is
found. The event will occur for each network variable in the range that has a
completion event.

If a program checks for the nv_update_succeeds event, it must check for
the nv_update_fails event as well. The alternative is to check only for
nv_update_completes. A program is also permitted to check only for
nv_update_fails as long as there is no use of nv_update_completes or
nv_update_succeeds for any network variable.

EXAMPLE:

network output int humidity;
...
humidity = 32; // This initiates an NV update
...
when (nv_update_completes(humidity))
{

...
}

1-10 Predefined Events

nv_update_fails EVENT
nv_update_fails [(network-var)]

nv_update_fails [(network-var1 .. network-var2)]

network-var is a network variable identifier, a network variable
array identifier, or a network variable array element.
A range can be specified with two network variable
identifiers or network variable array elements
separated with a range operator (two consecutive
dots). If the parameter is omitted, the event is TRUE
when any network variable update fails.

The nv_update_fails event evaluates to TRUE when an output network
variable update or poll fails (see Table 4-2 in the Neuron C Programmer’s
Guide for the definition of success).

If an array name is used, then each element of the array will be checked for
failure. The event will occur once for each element that has a failure event.
An individual element may be checked with use of an array index. When
nv_update_fails is TRUE, the nv_array_index built-in variable (type
short int) may be examined to obtain the element's index to which the event
applies.

If a network variable range is used, then the network variable at the
beginning of the range must have a lower global index than the network
variable at the end of the range. Each network variable in the range will be
checked for failure until the first such network variable with an event is
found. The event will occur for each network variable in the range that has a
failure event.

Checking the completion event (nv_update_completes, or nv_update_fails
in combination with nv_update_succeeds) is optional by network variable.

If a program checks for the nv_update_succeeds event, it must check for
the nv_update_fails event as well. The alternative is to check only for
nv_update_completes. A program is also permitted to check only for
nv_update_fails as long as there is no use of nv_update_completes or
nv_update_succeeds for any network variable.

EXAMPLE:

network output int humidity;
...
humidity = 32;
...
when (nv_update_fails(humidity))
{

...
}

Neuron C Reference Guide 1-11

nv_update_occurs EVENT
nv_update_occurs [(network-var)]

nv_update_occurs [(network-var1 .. network-var2)]

network-var is a network variable identifier, a network variable
array identifier, or a network variable array element.
A range can be specified with two network variable
identifiers or network variable array elements
separated with a range operator (two consecutive
dots). If the parameter is omitted, the event is TRUE
for any network variable update.

The nv_update_occurs event evaluates to TRUE when a value has been
received for an input network variable.

If an array name is used, then each element of the array will be checked to
see if a value has been received. The event will occur once for each element
that receives an update. An individual element may be checked with use of
an array index. When nv_update_occurs is TRUE, the nv_array_index
built-in variable (type short int) may be examined to obtain the element's
index to which the event applies.

If a network variable range is used, then the network variable at the
beginning of the range must have a lower global index than the network
variable at the end of the range. Each network variable in the range will be
checked to see if a value has been received. The event will occur once for each
network variable in the range that receives an update.

EXAMPLE:

network input boolean switch_state;

when (nv_update_occurs(switch_state))
{

...
}

1-12 Predefined Events

nv_update_succeeds EVENT
nv_update_succeeds [(network-var)]

nv_update_succeeds [(network-var1 .. network-var2)]

network-var is a network variable identifier, a network variable
array identifier, or a network variable array element.
A range can be specified with two network variable
identifiers or network variable array elements
separated with a range operator (two consecutive
dots). If the parameter is omitted, the event is TRUE
when any network variable update succeeds.

The nv_update_succeeds event evaluates to TRUE when an output
network variable update has been successfully sent or a poll succeeds.

If an array name is used, then each element of the array will be checked for
success. The event will occur once for each element that has a succeeds
event. An individual element may be checked with use of an array index.
When nv_update_succeeds is TRUE, the nv_array_index built-in variable
(type short int) may be examined to obtain the element's index to which the
event applies.

If a network variable range is used, then the network variable at the
beginning of the range must have a lower global index than the network
variable at the end of the range. Each network variable in the range will be
checked to see if a value has been received. The event will occur once for each
network variable in the range that has a succeeds event.

Checking the completion event (nv_update_completes, or nv_update_fails
in combination with nv_update_succeeds) is optional by network variable.

If a program checks for the nv_update_succeeds event, it must check for
the nv_update_fails event as well. The alternative is to check only for
nv_update_completes. A program is also permitted to check only for
nv_update_fails as long as there is no use of nv_update_completes or
nv_update_succeeds for any network variable.

EXAMPLE:

network output int humidity;
...
humidity = 32;
...
when (nv_update_succeeds(humidity))
{

...
}

Neuron C Reference Guide 1-13

offline EVENT
offline

The offline event evaluates to TRUE only if the device is online and an
offline network management message is received, or when a program calls
go_offline(). The offline event is handled as the first priority when clause.
It can be used in no more than one when clause in a program.

The offline event can be used to place a device offline in case of an
emergency, for maintenance, or in response to some other system-wide
condition. After execution of this event and its task, the application program
halts until the device is reset or brought back online. Once offline, a device
responds only to the reset or online messages from a network management
tool. Network variables on an offline device cannot be polled using a network
variable poll request message but they can be polled using a network variable
fetch network management message.

If this event is checked for outside of a when clause, the programmer can
confirm to the scheduler that the application program is ready to go offline by
calling the offline_confirm() function (see the Going Offline in Bypass Mode
section in Chapter 5 of the Neuron C Programmer's Guide).

When an application goes offline, all outstanding transactions are
terminated. To ensure that any outstanding transactions complete normally,
the application can call flush_wait() in the when(offline) task.

EXAMPLE:

when (offline)
{

flush_wait();
// process shut-down command

}

when (online)
{

// start-up again, poll inputs
}

1-14 Predefined Events

online EVENT
online

The online event evaluates to TRUE only if the device is offline and an
online network management message is received. The online event can be
used in no more than one when clause in a program. The task associated
with the online event in a when clause can be used to bring a device back
into operation in a well-defined state.

EXAMPLE:

when (offline)
{

flush_wait();
// process shut-down command

}

when (online)
{

// resume operation
}

reset EVENT
reset

The reset event evaluates to TRUE the first time this event is evaluated
after a Neuron Chip is reset. (I/O object and global variable initializations
are performed before processing any events.) The reset event task is always
executed first after reset of the Neuron Chip. The reset event can be used in
no more than one when clause in a program.

The code in a reset task is limited in size. If you need more code than the
compiler permits, move some or all of the code within the reset task to a
function called from the reset task.

The power_up() function can be called in a reset clause to determine
whether the reset was due to power-up, or to some other cause such as a
hardware reset, software reset, or watchdog timer reset.

EXAMPLE:

when (reset)
{

// poll state of all inputs
}

Neuron C Reference Guide 1-15

resp_arrives EVENT
resp_arrives [(message-tag)]

message-tag is an optional message tag. If this field is omitted, the
event is TRUE for receipt of any response message.

The resp_arrives event evaluates to TRUE when a response arrives. This
event can be qualified by a specific message tag.

EXAMPLE:

msg_tag tag_out;
...
msg_out.tag = tag_out;
msg_out.service = REQUEST;
msg_send();
...
when (resp_arrives(tag_out))
{

...
}

timer_expires EVENT
timer_expires [(timer-name)]

timer-name is an optional timer object. If this field is omitted, the
event is TRUE as long as any timer object has expired.

The timer_expires event evaluates to TRUE when a previously declared
timer object expires. If the timer_name option is not included, the event is
an unqualified timer_expires event. Unlike all other predefined events,
which are TRUE only once, the unqualified timer_expires event remains
TRUE as long as any timer object has expired. This event can be cleared only
by checking for specific timer expiration events.

EXAMPLE:

mtimer countdown;
...
countdown = 100;
...
when (timer_expires(countdown))
{

...
}

1-16 Predefined Events

wink EVENT
wink

The wink event evaluates to TRUE whenever a wink network management
message is received from a network tool. The device can be configured or
unconfigured, but it must have a program running on it.

The wink event is unique in that it can evaluate to TRUE even though the
device is unconfigured. This event facilitates installation by allowing an
unconfigured device to perform an action in response to the network tool's
wink request.

EXAMPLE:

when (wink)
{
...io_out(io_indicator_light, ON);
}

2
Compiler Directives

This chapter provides reference information for compiler
directives, also known as pragmas. The ANSI C language
standard permits each compiler to implement a set of pragmas
which control certain compiler features that are not part of the
language syntax.

2-2 Compiler Directives

Compiler Directives
ANSI C permits compiler extensions through the #pragma directive. These
directives are implementation-specific.

In the Neuron C Compiler, pragmas can be used to set certain Neuron
firmware system resources and device parameters such as buffer counts and
sizes and receive transaction counts. See Chapter 6 of the Neuron C
Programmer’s Guide for a detailed description of the compiler directives for
buffer allocation.

Additional #pragma directives can be used to control other Neuron
firmware-specific parameters. These directives can appear anywhere in the
source file. The following directives are defined:
#pragma all_bufs_offchip

This pragma is only used with the LonBuilder MIP/DPS. It
causes the compiler to instruct the firmware and the linker to
place all application and network buffers in offchip RAM. This
pragma is useful only on the Neuron 3150® Chip or FT 3150
Smart Transceiver, since these are the only parts with off-chip
memory. See the LonBuilder Microprocessor Interface Program
(MIP) User's Guide for more information.

#pragma app_buf_in_count count

See Allocating Buffers in Chapter 8 of the Neuron C
Programmer’s Guide for detailed information on this pragma and
its use.

#pragma app_buf_in_size size

See Allocating Buffers in Chapter 8 of the Neuron C
Programmer’s Guide for detailed information on this pragma and
its use.

#pragma app_buf_out_count count

See Allocating Buffers in Chapter 8 of the Neuron C
Programmer’s Guide for detailed information on this pragma and
its use.

#pragma app_buf_out_priority_count count

See Allocating Buffers in Chapter 8 of the Neuron C
Programmer’s Guide for detailed information on this pragma and
its use.

#pragma app_buf_out_size size

See Allocating Buffers in Chapter 8 of the Neuron C
Programmer’s Guide for detailed information on this pragma and
its use.

#pragma codegen option

This pragma allows limited control of certain features in the
compiler's code generator. Application timing and code size may

Neuron C Reference Guide 2-3

be affected by use of these directives. The valid options that can
be specified are:

 create_cp_value_files_uninit
 expand_stmts_off
 expand_stmts_on
 no16bitstkfn
 nofastcompare
 noptropt
 noshiftopt
 nosiofar
 optimization_off
 optimization_on
 put_cp_template_file_in_data_memory
 put_read_only_cps_in_data_memory

Some of these options are provided for compatibility with prior
releases of the Neuron C Compiler and LonBuilder releases prior
to release 3. The no16bitstkfn, nofastcompare, noptropt, and
noshiftopt options disable various optimizations in the compiler.
The nosiofar option is provided for Neuron firmware versions
which include the serial I/O functions in the near system-call
area.

Although unlikely, it is possible that a program which compiled
and linked for a Neuron 3120® Chip in releases prior to 3 would
not fit if compiled under release 3, since some of the new compiler
optimizations may, under certain circumstances, cause an
increase in code size

The noptropt option may be desirable when debugging a
program, since the debugger does not have knowledge of whether
the compiler has eliminated redundant loads of a pointer between
statement boundaries. If a breakpoint is set in such
circumstances, modification of the pointer variable from the
debugger would not modify the loaded pointer register which the
compiler may then use in subsequent statements. Use of this
pragma will avoid the problem discussed above, but may also
cause a substantial performance or size degradation in the
generated code. This codegen option should not be used except
while debugging.

2-4 Compiler Directives

The expand_stmts_off and expand_stmts_on options control
the behavior of the compiler code generator. Normally, statement
expansion is off. To permit the network debug kernel to set a
breakpoint at any statement whose code is stored in modifiable
memory, the statement's code must be at least two bytes in
length. Due to optimization, some statements can be
accomplished in less than two bytes of generated Neuron machine
code. Activating statement expansion tells the code generator to
insure that each statement contains at least two bytes of code by
inserting a NOP instruction if necessary.

The optimization_off and optimization_on options also control
the behavior of the compiler code generator. Normally,
optimization is on. To prevent the compiler's code optimizer from
collapsing two or more statements together, and thus making it
difficult to place breakpoints in a program being debugged, this
option can be used to disable all compiler optimization. This
option may also be useful if an optimization problem is suspected,
as code can be generated without optimization, and its behavior
compared.

The create_cp_value_files_uninit pragma is used to prevent
the compiler from generating configuration value files that
contain initial values. Instead, the value files will be generated
with no initial value, such that the Neuron loader will not load
anything into the block of memory, instead the contents prior to
load will be unaltered. This can be helpful if a program needs to
be reloaded, but its configuration data is to remain unchanged.

The put_cp_template_file_in_data_memory pragma is used to
direct the compiler to create the configuration template file in a
device’s data memory instead of code memory. The purpose of
doing this would be to permit write access to the template file, or
to permit more control over memory organization to accommodate
special device memory requirements.

The put_read_only_cps_in_data_memory pragma is used to
direct the compiler to create the configuration read-only value file
in a device’s data memory instead of code memory. The purpose
of doing this would be to permit write access to the template file,
or to permit more control over memory organization to
accommodate special device memory requirements.

#pragma debug option

This pragma allows selection of various network debugger
features. A program using network debugger features can only be
used with versions 6 and greater of the Neuron firmware.

Neuron C Reference Guide 2-5

The valid options are shown in the list below. This pragma can
be used multiple times to combine options, but not all options can
be combined.

 network_kernel
 no_event_notify
 no_func_exec
 no_node_recovery
 no_reset_event
 node_recovery_only

The debugger network kernel must be included to use the device
with the network debugger supplied with the NodeBuilder
Development Tool or the LCA Field Compiler API. The network
debugger is not part of the LonBuilder software and is not
required to use the LonBuilder Neuron C debugger. The network
kernel consists of several independent but interacting modules,
all of which are included in the program image by default. To
reduce the size of the network debug kernel included in a
program, one or more of the following options can be specified in
additional #pragma debug directives. See the NodeBuilder
User’s Guide and the NodeBuilder online help for more
information.

Use of the no_event_notify option excludes the event
notification module.

Use of the no_func_exec option excludes the remote function
execution module.

Use of the no_node_recovery option turns off the device’s reset
recovery delay that the compiler automatically includes when the
network debugging kernel is included.

Use of the no_reset_event option turns off the reset event
notification feature. This feature is not necessary if the
no_event_notify option is used to exclude all event notification,
since the reset event notification is part of the event notification
feature.

Use of the node_recovery_only option instructs the compiler to
include the node recovery feature only, without the network
debug kernel.

#pragma disable_mult_module_init

Specifies to the compiler to generate any required initialization
code directly in the special init and event block, rather than as a
separate procedure callable from the special init and event block.
The in-line method, which is selected as a result of this pragma, is
slightly more efficient in memory usage, but may not permit a
successful link for an application on a Neuron 3150 Chip or FT
3150 Smart Transceiver. This pragma should only be used when
trying to shoehorn a program into a Neuron 3120 Chip or FT 3120

2-6 Compiler Directives

Smart Transceiver. See the discussion on What to Try When a
Program Doesn't Fit on a 3120 in Chapter 8 of the Neuron C
Programmer’s Guide.

#pragma disable_servpin_pullup

Disables the internal pullup on the service pin. (This pullup is
normally enabled.) The pragma takes effect during I/O
initialization. Do not use this directive with a LonBuilder Neuron
Emulator.

#pragma disable_snvt_si

Disables generation of the self-identification (SI) data. The SI
data is generated by default, but may be disabled using this
pragma in order to reclaim program memory when the feature is
not needed. This pragma may only appear once in the source
program. See the Standard Network Variable Types (SNVTs)
section in Chapter 3 of the Neuron C Programmer’s Guide.

#pragma eeprom_locked

This pragma provides a mechanism whereby an application can
lock its checksummed EEPROM. Checksummed EEPROM
includes the application and network images, but not application
EEPROM variables. Setting the flag improves reliability as
attempts to write EEPROM as a result of wild jumps will fail.
EEPROM variables are not protected. See the discussion of the
set_eeprom_lock() function in Chapter 3 of this Reference
Guide for more information.

There are drawbacks to using the EEPROM lock mechanism. A
node with this pragma (or one using the set_eeprom_lock()
function) requires that the node be taken offline before
checksummed EEPROM can be modified. So, if the node is
configured by a network tool that does not take the node offline
prior to changes, the tool will fail to change the configuration.

#pragma enable_io_pullups

Enables the internal pull-ups on pins IO_4 through IO_7. The
pragma takes effect during I/O initialization. (These pull-ups are
normally disabled.) This pragma can eliminate external
components when pull-ups are required.

#pragma enable_multiple_baud

Must be used when using multiple serial I/O devices which have
differing bit rates. If needed, this pragma must appear prior to
the use of any I/O function (e.g. io_in(), io_out()).

#pragma enable_sd_nv_names

Causes the compiler to include the network variable names in the
self-documentation (SD) information when self-identification (SI)
data is generated. This pragma may only appear once in the
source program. See the Standard Network Variable Types

Neuron C Reference Guide 2-7

(SNVTs) section in Chapter 3 of the Neuron C Programmer’s
Guide.

#pragma explicit_addressing_off

#pragma explicit_addressing_on

These pragmas are only used with the Microprocessor Interface
Program (MIP). See the LONWORKS Microprocessor Interface
Program (MIP) User's Guide for more information.

#pragma fyi_off

#pragma fyi_on

Controls the compiler's printing of informational messages.
Informational messages are less severe than warnings, yet may
indicate a problem in a program, or a place where code could be
improved. Informational messages are off by default at the start
of compilation. These pragmas may be intermixed multiple times
throughout a program to turn informational message printing on
and off as desired.

#pragma hidden

This pragma is for use only in the <echelon.h> standard include
file.

#pragma idempotent_duplicate_off

#pragma idempotent_duplicate_on

These pragmas control the idempotent request retry bit in the
application buffer. This feature only applies to MIPs. One of
these pragmas is required when compiling, if the #pragma
micro_interface directive also is used. See the LONWORKS
Microprocessor Interface Program (MIP) User's Guide for more
information.

#pragma ignore_notused symbol

This pragma requests that the compiler ignore the "referenced"
flag for the named symbol. The compiler normally prints warning
messages for any variables, functions, I/O objects, etc. which are
declared but never used in a program. This pragma may be used
one or more times to suppress the warning on a symbol by symbol
basis.

The pragma should appear after the variable declaration. A good
coding convention is to place the pragma on the line immediately
following the variable's declaration. For automatic scope
variables, the pragma must appear no later than the line
preceding the close brace character '}' which terminates the scope
containing the variable. There is no terminating brace for any
variable declared at file scope.

2-8 Compiler Directives

#pragma include_assembly_file filename

This pragma can be used with the Neuron C Version 2 compiler to
cause the compiler to open filename and copy its contents to the
assembly output file. The compiler will always copy the contents
such that the assembly code will not interfere with code being
generated by the compiler. Echelon does not document or support
direct use of the Neuron Assembler with user-written assembly
code.

#pragma micro_interface

This pragma is only used with the Microprocessor Interface
Program (MIP). See the LONWORKS Microprocessor Interface
Program (MIP) User's Guide for more information.

#pragma names_compatible

This pragma is useful in Neuron C Version 2 to force the compiler
to treat names starting with SCPT*, UNVT*, UCPT*, SFPT*, and
UFPT* as normal variable names instead of special symbols to be
resolved via resource files. Disabling the special behavior permits
the compiler to accept programs written using Neuron C Version
1 that declare such names in the program.

#pragma net_buf_in_count count

See Allocating Buffers in Chapter 8 of the Neuron C
Programmer’s Guide for more detailed information on this
pragma and its use.

#pragma net_buf_in_size size

See Allocating Buffers in Chapter 8 of the Neuron C
Programmer’s Guide for detailed information on this pragma and
its use.

#pragma net_buf_out_countcount

See Allocating Buffers in Chapter 8 of the Neuron C
Programmer’s Guide for detailed information on this pragma and
its use.

#pragma net_buf_out_priority_count count

See Allocating Buffers in Chapter 8 of the Neuron C
Programmer’s Guide for detailed information on this pragma and
its use.

#pragma net_buf_out_size size

See Allocating Buffers in Chapter 8 of the Neuron C
Programmer’s Guide for detailed information on this pragma and
its use.

Neuron C Reference Guide 2-9

#pragma netvar_processing_off

#pragma netvar_processing_on

This pragma is only used with the Microprocessor Interface
Program (MIP). See the LONWORKS Microprocessor Interface
Program (MIP) User's Guide for more information.

#pragma no_hidden

This pragma is for use only in the <echelon.h> standard include
file.

#pragma num_addr_table_entries num

Sets the number of address table entries to num. Valid values for
num are 0 to 15. The default number of address table entries is
15. You can use this pragma to trade EEPROM space for address
table entries (see Chapter 8 of the Neuron C Programmer’s
Guide).

#pragma num_alias_table_entries num

Controls the number of alias table entries allocated by the
compiler. This number must be chosen at compile time, it cannot
be altered at run time. Valid values for num are 0 to 62. In
uron C Version 2, there is no compiler default for this value. A
Neuron C program must specify a value using this pragma. You
can use this pragma to trade EEPROM space for alias table
entries (see Chapter 8 of the Neuron C Programmer’s Guide).

#pragma num_domain_entries num

Sets the number of domain table entries to num. Valid values for
num are 1 or 2. The default number of domain table entries is 2.
You can use this pragma to trade EEPROM space for a domain
table entry (see Chapter 8 of the Neuron C Programmer’s Guide).

#pragma one_domain

Sets the number of domain table entries to 1. This pragma is
provided for legacy application support and should no longer be
used. New applications should use the num_domain_entries
pragma instead. The default number of domain table entries is 2.

#pragma ram_test_off

Disables the off-chip RAM buffer space test to speed up
initialization. Normally the first thing the Neuron firmware does
when it comes up after a reset or power-up is to verify basic
functions such as CPUs, RAM, and timer/counters. This can
consume large amounts of time, particularly at slower clock
speeds. By turning off RAM buffer testing, you can trade off some
reset time for maintainability. All RAM static variables are
nevertheless initialized to zero.

#pragma read_write_protect

Allows a device's program to be read and write protected to
prevent copying or alteration via the network. This feature

2-10 Compiler Directives

provides protection of a manufacturer's confidential algorithms.
A device cannot be reloaded once it is protected. The write
protection feature is included to disallow "Trojan horse"
intrusions. The protection must be specifically enabled in the
Neuron C source program. Once a device has been loaded with an
application containing this pragma, the application program can
never be reloaded on a Neuron 3120 Chip. It is possible, however,
on the Neuron 3150 Chip or FT 3150 Smart Transceiver, with the
use of the EEBLANK program available in the developer's toolbox
at the www.echelon.com/toolbox website.

#pragma receive_trans_count num

Sets the number of receive transaction blocks to num. Valid
values for num are 1 to 16. See Allocating Buffers in Chapter 8 of
the Neuron C Programmer’s Guide for more detailed information
on this pragma and its use.

#pragma relaxed_casting_off

#pragma relaxed_casting_on

These pragmas control whether the compiler treats a cast which
removes the const attribute as an error or as a warning. The
cast may either be explicit, or implicit (as in an automatic
conversion due to assignment, or function parameter passing).
Normally, the compiler considers any conversion which removes
the const attribute to be an error. Turning on the relaxed
casting feature causes the compiler to treat this condition as a
warning instead. These pragmas may be intermixed throughout
a program to enable and disable the relaxed casting mode as
desired. See the example for Explicit Propagation of Network
Variables in Chapter 3 of the Neuron C Programmer’s Guide.

#pragma run_unconfigured

This pragma causes the application to run regardless of the
device state, as long as the device is not applicationless. This
means that even if the device is unconfigured or hard-offline, the
application will run. You can use this directive to have an
application perform some form of local control prior to or
independent of being installed in a network.

This directive cannot be used with firmware versions prior to
version 12.

#pragma scheduler_reset

Causes the scheduler to be reset within the nonpriority when
clause execution cycle, after each event is processed (see Chapter
7 of the Neuron C Programmer’s Guide for more information on
the Neuron scheduler).

http://www.echelon.com/toolbox

Neuron C Reference Guide 2-11

#pragma set_id_string "ssssssss"

Provides a mechanism for setting the device’s 8-byte program ID.
This directive is provided for legacy application support and
should no longer be used. The program ID should be set in the
NodeBuilder device template instead, and should not be set to a
text string except for network interface devices (e.g. devices using
the MIP). If this pragma is present, the value must agree with
the program ID set by the NodeBuilder tool.

This pragma initializes the 8-byte program ID located in the
application image. The program ID is sent as part of the service
pin message (transmitted when the service pin on a device is
activated) and also in the response for the query ID network
management message. The program ID may be set to any C
string constant, 8 characters or less.

This pragma can only be used to set a non-standard text program
ID where the first byte must be less than 0x80. To set a standard
program ID, use the #pragma set_std_prog_id directive,
documented below. If this pragma is used, the #pragma
set_std_prog_id directive cannot be used. Neither pragma is
required or recommended.

#pragma set_netvar_count nn

This pragma is only used with the Microprocessor Interface
Program (MIP). See the LONWORKS Microprocessor Interface
Program (MIP) User's Guide for more information.

#pragma set_node_sd_string C string const

Specifies and controls the generation of a comment string in the
self-documentation (SD) data in a device's application image.
Most devices have an SD string. The first part of this string
documents the functional blocks on the device. This part is
automatically generated by the Neuron C compiler. This first
part is followed by a comment string that documents the purpose
of the device. This comment string defaults to a NULL string and
may have a maximum of 1023 bytes, minus the first part of the
SD string generated by the Neuron C compiler, including the zero
termination character. This pragma explicitly sets the comment
string. Concatenated string constants are not allowed. This
pragma may only appear once in the source program.

#pragma set_std_prog_id hh:hh:hh:hh:hh:hh:hh:hh

 Provides a mechanism for setting the device’s 8-byte program ID.
This directive is provided for legacy application support and
should not be used for new programs. The program ID should be
set in the NodeBuilder device template instead. If this pragma is
present, the value must agree with the program ID set by the
NodeBuilder tool.

This pragma initializes the 8-byte program ID using the
hexadecimal values given (each character other than the colons in

2-12 Compiler Directives

the argument is a hexadecimal digit from 0 to F). The first byte
can only have a value of 8 or 9, with 8 reserved for devices
certified by the LONMARK association. If this pragma is used,
the #pragma set_id_string directive cannot be used. Neither
pragma is required or recommended.

Table 2.1 and Figure 2.1 show the standard program
identification fields that comprise the program ID.

Table 2.1 Standard Program Identification Fields

Field Size Type Assigned By

Format 4 bits unsigned LONMARK association

Manufacturer ID 20 bits unsigned LONMARK association

Device Class 16 bits unsigned LONMARK association

Device Subclass
 divided into:
 Usage

 Channel Type

16 bits

8 bits

8 bits

unsigned

unsigned

unsigned

LONMARK association

LONMARK association
 or manufacturer
LONMARK association

Model Number 8 bits unsigned manufacturer

As shown above in Table 1, the Device Subclass field is
subdivided into two 8-bit fields. The subdivision is of the form
UU:TT, where UU represents the Usage field which is the upper
8 bits of the Device Subclass, and TT represents the Channel
Type field which is the lower 8 bits of the Device Subclass.

4 bits

Format

20 bits 16 bits 16 bits 8 bits

Manufacturer ID Device Class Device Subclass Model Number

Figure 2.1 Diagram of Standard Program Identification Fields

The fields within the program identification string are the following:

• Format. A 4-bit value defining the structure of the program ID. The upper
bit of the format defines the program ID as a standard program ID (SPID) or
a text program ID. The upper bit is set for standard program IDs, so formats
8 – 15 (0x8 – 0xF) are reserved for standard program IDs. Program ID
format 8 is reserved for LONMARK certified devices. Program ID format 9 is
used for devices that will not be LONMARK certified, or for devices that will be
certified but are still in development or have not yet completed the
certification process. Program ID formats 10 - 15 (0xA – 0xF) are reserved
for future use. Text program ID formats are used by network interfaces and
legacy devices and, with the exception of network interfaces, should not be
used for new devices.

Neuron C Reference Guide 2-13

• Manufacturer ID. A 20-bit ID that is unique to each LONWORKS device
manufacturer. The upper bit identifies the manufacturer ID as a standard
manufacturer ID (upper bit clear) or a temporary manufacturer ID (upper bit
set). Standard manufacturer IDs are assigned to manufacturers when they
join the LONMARK Interoperability Association, and are also published by the
LONMARK Interoperability Association so that the device manufacturer of a
LONMARK certified device is easily identified. Standard manufacturer IDs
are never reused or reassigned. Temporary manufacturer IDs are available
to anyone on request by filling out a simple form at the
www.lonmark.org/mid website. If your company is a LONMARK member, but
you do not know your manufacturer ID, you can find your ID in the list of
manufacturer IDs at the www.lonmark.org/spid website. The most current
list at the time of release of the NodeBuilder tool is also included with the
NodeBuilder software.

• Device Class. A 16-bit value identifying the primary function of the device.
This value is drawn from a registry of pre-defined device class definitions. If
an appropriate device class designation is not available, the LONMARK
Association Secretary will assign one, upon request.

• Usage. An 8-bit value identifying the intended usage of the device. The
upper bit specifies whether the device has a changeable interface. The next
bit specifies whether the remainder of the usage field specifies a standard
usage or a functional-profile specific usage. The standard usage values are
drawn from a registry of pre-defined usage definitions. If an appropriate
usage designation is not available, one will be assigned upon request. If the
second bit is set, a custom set of usage values is specified by the primary
functional profile for the device.

• Channel Type. An 8-bit value identifying the channel type supported by the
device’s LONWORKS transceiver. The standard channel-type values are
drawn from a registry of pre-defined channel-type definitions. A custom
channel-type is available for channel types not listed in the standard registry.

• Model Number. An 8-bit value identifying the specific product model. Model
numbers are assigned by the product manufacturer and must be unique
within the device class, usage, and channel type for the manufacturer. The
same hardware may be used for multiple model numbers depending on the
program that is loaded into the hardware. The model number within the
program ID does not have to conform to the manufacturer's model number.

For more information about standard program IDs, see the
LONMARK Application Layer Interoperability Guidelines.

#pragma snvt_si_eecode

Causes the compiler to force the linker to locate the self-
identification and self-documentation information in EECODE
space. See Memory Areas in Chapter 6 of the Neuron C
Programmer’s Guide for a definition of the EECODE space. (By
default, the linker may place the table in EEPROM or in ROM
code space, as it determines.) Placing this table in EEPROM
ensures that it may be modified via memory write network
management messages. A network tool can use this capability to
modify self-documentation of a device during installation. This is
useful for devices that may be connected to different types of I/O
devices, and is also useful for data loggers that can collect data

http://www.lonmark.org/mid
http://www.lonmark.org/spid

2-14 Compiler Directives

from a variety of devices. This pragma is only useful on a Neuron
3150 Chip or FT3150 Smart Transceiver.

#pragma snvt_si_ramcode

Causes the compiler to force the linker to locate the self-
identification and self-documentation information in RAMCODE
space. See Memory Areas in Chapter 6 of the Neuron C
Programmer’s Guide for a definition of the RAMCODE space. By
default, the linker may place the table in EEPROM or in ROM
code space, as it determines. Placing this table in RAM ensures
that it may be modified via memory write network management
messages. NOTE: RAMCODE space is always external memory,
and is assumed to be non-volatile. This pragma is only useful on
a Neuron 3150 Chip or FT 3150 Smart Transceiver. See
#pragma snvt_si_eecode for an example of usage.

#pragma transaction_by_address_off

#pragma transaction_by_address_on

These pragmas explicitly control which version of transaction ID
allocation algorithm the Neuron firmware uses. Some versions of
the Neuron firmware (and any later versions) support a new
version of transaction ID allocation which has superior duplicate
rejection properties. For the Neuron 3150 Chip, FT 3150 Chip,
Neuron 3120E1 Chip, Neuron 3120E2 Chip, FT 3120 Smart
Transceiver firmware version 6 (or later) supports either
algorithm. For the Neuron 3120 Chip, firmware version 4 (or
later) supports either algorithm. The newer version of
transaction tracking (the on option) is used by default when
available, unless the device is a LONWORKS network interface
(e.g. running the MIP), or the device's application program
generates explicit destination addresses.

#pragma warnings_off

#pragma warnings_on

Controls the compiler's printing of warning messages. Warning
messages generally indicate a problem in a program, or a place
where code could be improved. Warning messages are on by
default at the start of a compilation. These pragmas may be
intermixed multiple times throughout a program to turn
informational message printing on and off as desired.

3
Functions

This chapter provides reference information on the Neuron C
built-in and library functions.

3-2 Functions

Introduction
The following pages list Neuron C functions, providing syntax information,
descriptions, and examples of each function. Some functions are built-in
functions. This means they are used as if they were function calls, but they
are permanently part of the Neuron C language and are implemented by the
compiler without necessarily mapping into an actual function call. Some
built-in functions may have special behaviors depending on their context and
usage. The remainder are library calls. Some library calls have function
prototypes in one of the standard include files, as noted. The standard
include files are:

 • <a2d.h>
 • <access.h> (this file includes <addrdefs.h>)
 • <addrdefs.h>
 • <byte.h>
 • <control.h>
 • <float.h>
 • <io_types.h>
 • <limits.h>
 • <mem.h>
 • <modnvlen.h>
 • <msg_addr.h>
 • <netmgmt.h>
 • <nm_ckm.h>
 • <nm_err.h>
 • <nm_fm.h>
 • <nm_inst.h>
 • <nm_mod.h>
 • <nm_model.h>
 • <nm_nmo.h>
 • <nm_rqr.h>
 • <nm_sel.h>
 • <nm_ste.h>
 • <nm_sub.h>
 • <nm_wch.h>
 • <psg.h>
 • <psgreg.h>
 • <s32.h>
 • <status.h>
 • <stddef.h>
 • <stdlib.h>
 • <string.h>

The remainder of the functions and built-in functions derive their prototypes
from <echelon.h>, an include file that is automatically incorporated in each
compilation. Except for <echelon.h>, you must incorporate the necessary
include file(s) to use a function. Although some of the following function
descriptions list both an include file and a prototype, you should only specify
the #include directive. The prototype is contained in the include file, and is
shown here only for reference.

The functions listed in this section include floating-point and extended
(32-bit) precision arithmetic support. A general discussion of the use of

Neuron C Reference Guide 3-3

floating-point variables and floating-point arithmetic, and a discussion of the
use of extended precision variables and extended precision arithmetic is
included in the following list of functions.

Any existing application program developed for a Neuron 3120xx Chip or FT
3120 Smart Transceiver that uses any of the functions which are brought in
from a system library will require more EEPROM memory on a Neuron
3120xx Chip or FT 3120 Smart Transceiver than on a Neuron 3150 Chip or
FT 3150 Smart Transceiver. This is because these functions have been
moved from the ROM portion of the Neuron firmware to a system library.
Examination of the link map provides a measure of the EEPROM memory
used by these functions. See the System Library on a Neuron 3120 Chip
section in Chapter 8 of the Neuron C Programmer's Guide for more detailed
information on how to create and examine a link map to obtain a measure of
the Neuron 3120xx Chip or FT 3120 Smart Transceiver EEPROM usage
required for these functions. Also see the LonBuilder User's Guide and
NodeBuilder User’s Guide for additional information on the link map.

NOTE: Neuron 3120 xx Chip refers to the Neuron 3120, 3120E1, and
3120E2 Chips.

Overview of Neuron C Functions
You can call the following functions from a Neuron C application program.
These functions are built into the Neuron C Compiler, are part of the Neuron
Chip system image, or are linked into the application image from a system
library. Each function has a specified type from the following list:

1 Built-in function included with the Neuron C Compiler

2 Function included with the Neuron firmware for the Neuron 3120xx Chip, FT
3120 Smart Transceiver, Neuron 3150 Chip, and the FT 3150 Smart
Transceiver.

3 Function included with the Neuron firmware for the Neuron 3150 Chip or FT
3150 Smart Transceiver and linked into the application image from a system
library for Neuron 3120xx Chips and FT 3120 Smart Transceivers.

4 Function linked into the application image from a system library for all
Neuron Chips and Smart Transceivers.

5 Function included with the Neuron firmware for the Neuron 3150 Chip or the
FT 3150 Smart Transceiver and linked into the application image from a
system library for the Neuron 3120E1 Chip, Neuron 3120E3 Chips, and
FT3120 Smart Transceiver. Not available on Neuron 3120 Chips.

6 Function included with the Neuron firmware for the Neuron 3120 and 3150
Chip system images and linked into the application image from a system
library for Neuron 3120E1 and 3120E2 Chips.

3-4 Functions

Execution Control

Function Type Description
delay() 2 Delay processing for a time independent of

input clock rate
flush() 2 Flush all outgoing messages and network

variable updates
flush_cancel() 2 Cancel a flush in process
flush_wait() 3 Wait for outgoing messages and updates to be

sent before going off-line
get_tick_count() 1 Accesses hardware times
go_offline() 2 Cease execution of the application program
post_events() 2 Define a critical section boundary for network

variable and message processing
power_up() 3 Determine whether last processor reset was

due to power up
preemption_mode() 4 Determine whether the application processor

scheduler is currently running in preemption
mode.

scaled_delay() 2 Delay processing for a time that depends on the
input clock rate

sleep() 2 Enter low-power mode by disabling system
clock

timers_off() 2 Turn off all software timers
watchdog_update() 2 Re-trigger the watchdog timer to prevent

device reset

Network Configuration

Function Type Description
access_address() 3 Read device’s address table
access_alias() 5 Read device's alias table
access_domain() 3 Read device’s domain table
access_nv() 3 Read device’s network variable configuration

table
addr_table_index() 1 Determine address table index of message tag
application_restart() 2 Begin application program over again
go_unconfigured() 3 Reset this device to an uninstalled state
node_reset() 2 Activate the reset pin, and reset all CPUs
nv_table_index() 1 Determine index of a network variable
offline_confirm() 2 Inform network tool that this device is going

off-line
update_address() 3 Write device’s address table
update_alias() 5 Write device's alias table
update_clone_domain() 3 Write device’s domain table with clone entry
update_config_data() 3 Write device’s configuration data structure
update_domain() 3 Write device’s domain table with normal entry
update_nv() 3 Write device’s network variable configuration

table

Neuron C Reference Guide 3-5

Integer Math

Function Type Description
abs() 2 Arithmetic absolute value
bcd2bin() 3 Convert Binary Coded Decimal data to binary
bin2bcd() 3 Convert binary data to Binary Coded Decimal
high_byte() 1 Extract the high byte of a 16-bit number
low_byte() 1 Extract the low byte of a 16-bit number
make_long() 1 Create a 16-bit number from two 8-bit numbers
max() 2 Arithmetic maximum of two values
min() 2 Arithmetic minimum of two values
muldiv() 3 Multiply/divide with 32-bit intermediate result

- unsigned
muldiv24() 4 Multiply/divide with 24-bit intermediate result

- unsigned
muldiv24s() 4 Multiply/divide with 24-bit intermediate result

- signed
muldivs() 3 Multiply/divide with 32-bit intermediate result

- signed
random() 2 Generate eight-bit random number
reverse() 3 Reverse the order of bits in an eight-bit number
rotate_long_left() 4 Rotate left a 16-bit number
rotate_long_right() 4 Rotate right a 16-bit number
rotate_short_left() 4 Rotate left an 8-bit number
rotate_short_right() 4 Rotate right an 8-bit number
s32_abs() 4 Take the absolute value of a signed 32-bit

number
s32_add() 4 Add two signed 32-bit numbers
s32_cmp() 4 Compare two 32-bit signed numbers
s32_dec() 4 Decrement a 32-bit signed number
s32_div() 4 Divide two signed 32-bit numbers
s32_div2() 4 Divide a 32-bit signed number by 2
s32_eq() 4 Return TRUE if first argument == second

argument
s32_from_ascii() 4 Convert an ASCII string into 32-bits signed
s32_from_slong() 4 Convert a signed long number into 32-bit

signed
s32_from_ulong() 4 Convert an unsigned long number into 32-bit

signed
s32_ge() 4 Return TRUE if first argument is � second

argument
s32_gt() 4 Return TRUE if first argument is > second

argument
s32_inc() 4 Increment a 32-bit signed number
s32_le() 4 Return TRUE if first argument is � second

argument
s32_lt() 4 Return TRUE if first argument is < second

argument
s32_max() 4 Take the maximum of two signed 32-bit

numbers
s32_min() 4 Take the minimum of two signed 32-bit

numbers
s32_mul() 4 Multiply two signed 32-bit numbers

3-6 Functions

s32_mul2() 4 Multiply a 32-bit signed number by 2
s32_ne() 4 Return TRUE if first argument != second

argument
s32_neg() 4 Return the negative of a signed 32-bit number
s32_rand() 4 Return a random 32-bit signed number
s32_rem() 4 Return the remainder of a division of two

signed 32-bit numbers
s32_sign() 4 Return the sign of a 32-bit signed number
s32_sub() 4 Subtract two signed 32-bit numbers
s32_to_ascii() 4 Convert a 32-bit signed number into an ASCII

string
s32_to_slong() 4 Convert a 32-bit signed number into signed

long
s32_to_ulong() 4 Convert a 32-bit signed number into unsigned

long
swap_bytes() 1 Exchange the two bytes of a 16-bit number

Floating-point Math

Function Type Description
fl_abs() 4 Take the absolute value of a floating-point

number
fl_add() 4 Add two floating-point numbers
fl_ceil() 4 Return the ceiling of a floating-point number
fl_cmp() 4 Compare two floating-point numbers
fl_div() 4 Divide two floating-point numbers
fl_div2() 4 Divide a floating-point number by two
fl_eq() 4 Return TRUE if first argument == second

argument
fl_floor() 4 Return the floor of a floating-point number
fl_from_ascii() 4 Convert an ASCII string to floating-point
fl_from_s32() 4 Convert a signed 32-bit number to floating-

point
fl_from_slong() 4 Convert a signed long number into a floating-

point number
fl_from_ulong() 4 Convert an unsigned long number to floating-

point
fl_ge() 4 Return TRUE if first argument >= second

argument
fl_gt() 4 Return TRUE if first argument > second

argument
fl_le() 4 Return TRUE if first argument <= second

argument
fl_lt() 4 Return TRUE if first argument < second

argument
fl_max() 4 Find the maximum of two floating-point

numbers
fl_min() 4 Find the minimum of two floating-point

numbers
fl_mul() 4 Multiply two floating-point numbers
fl_mul2() 4 Multiply a floating-point number by two

Neuron C Reference Guide 3-7

fl_ne() 4 Return TRUE if first argument != second
argument

fl_neg() 4 Return the negative of a floating-point number
fl_rand() 4 Return a random floating-point number
fl_round() 4 Round a floating-point number to the nearest

whole number
fl_sign() 4 Return the sign of a floating-point number
fl_sqrt() 4 Return the square root of a floating-point

number
fl_sub() 4 Subtract two floating-point numbers
fl_to_ascii() 4 Convert a floating-point number to an ASCII

string
fl_to_ascii_fmt() 4 Convert a floating-point number to a formatted

ASCII string
fl_to_s32() 4 Convert a floating-point number to signed 32-

bit
fl_to_slong() 4 Convert a floating-point number to signed long
fl_to_ulong() 4 Convert a floating-point number to unsigned

long
fl_trunc() 4 Return the whole number part of a floating-

point number

Strings

Function Type Description
strcat() 4 Append a copy of a string at the end of another
strchr() 4 Scan a string for a specific character
strcmp() 4 Compare two strings
strcpy() 4 Copy one string into another
strlen() 4 Return the length of a string
strncat() 4 Append a copy of a string at the end of another
strncmp() 4 Compare two strings
strncpy() 4 Copy one string into another
strrchr() 4 Scan a string in reverse for a specific character

Utilities

Function Type Description
ansi_memcpy() 4 Copy a block of memory with ANSI return value
ansi_memset() 4 Set a block of memory to a specified value with

ANSI return value
clear_status() 4 Clear error statistics accumulators and error

log
clr_bit() 4 Clear a bit in a bit array
crc8() 4 Calculate an 8-bit CRC over an array
crc16() 4 Calculate a 16-bit CRC over an array
eeprom_memcpy() 2 Copy a block of memory to EEPROM

destination
error_log() 4 Record software-detected error
fblock_director() 4 Call the director associated with an fblock

3-8 Functions

get_fblock_count () 1 Return the number of fblock declarations in the
program

get_nv_count () 1 Return the number of network variable
declarations in the program

memccpy() 4 Copy a block of memory
memchr() 4 Search a block of memory
memcmp() 4 Compare a block of memory
memcpy()

3
3
3
2

Copy a block of memory
• from msg_in.data and resp_in.data
• to resp_out.data
• length �256 bytes
• others

memset()
3
2

Set a block of memory to a specified value
• length �256 bytes
• others

refresh_memory() 2 Rewrite contents of EEPROM memory
retrieve_status() 3 Read statistics from protocol processor
retrieve_xcvr_status() 4 Read transceiver status register
set_bit() 4 Set a bit in a bit array
set_eeprom_lock() 2 Set the state of the checksummed EEPROM's

lock
tst_bit() 4 Return TRUE if bit tested was set

Input/Output

Function Type Description
io_change_init() 2 Initialize reference value for io_changes event
io_edgelog_preload() 3 Define maximum value for edgelog period

measurements
io_in()

3
3
3
3
3
4
6
4
4
2

Input data from I/O object
• Dualslope input
• Edgelog input
• Infrared input
• Magcard input
• Neurowire I/O slave mode
• Neurowire I/O with invert option
• Serial input
• Touch I/O
• Wiegand input
• others

io_in_ready() 2 Event function which evaluates to TRUE when a
block of data is available from the parallel I/O
object

io_in_request() 3 Start dualslope A/D conversion
io_out()

6
3
4
6
4
2

Output data to I/O object
• Bitshift output
• Neurowire I/O slave mode
• Neurowire I/O with invert option
• Serial output
• Touch I/O
• others

Neuron C Reference Guide 3-9

io_out_ready() 2 Event function which evaluates to TRUE when
a block of data is available from the parallel I/O
object

io_out_request() 2 Request ready indication from parallel I/O
object

io_preserve_input() 3 Preserve first timer/counter value after reset or
io_select()

io_select() 2 Set timer/counter multiplexer
io_set_clock() 2 Set timer/counter clock rate
io_set_direction() 2 Change direction of I/O pins

Signed 32-Bit Integer Support Functions
The Neuron C compiler does not directly support the use of the C arithmetic
and comparison operators with signed 32-bit integers. However, there is a
complete library of functions for 32-bit integer match. These functions are
listed under Integer Math in the previous section. For example, in standard
ANSI C, to evaluate X = A + B * C in long (32-bit) arithmetic, the '+' and '*'
infix operators may be used as follows:

 long X, A, B, C;

X = A + B * C;

With Neuron C, this can be expressed as follows:
s32_type X, A, B, C;

s32_mul(&B, &C, &X);

s32_add(&X, &A, &X);

The signed 32-bit integer format can represent numbers in the range of
±2,147,483,647 with an absolute resolution of ±1.

An s32_type structure data type for signed 32-bit integers is defined by
means of a typedef in the file <S32.H>. It defines a structure containing an
array of four bytes that represents a signed 32-bit integer in Neuron C
format. This is represented as a two's complement number stored with the
most significant byte first. The type declaration is shown here for reference:

typedef struct {
int bytes[4];

} s32_type;

All the constants and functions in <S32.H> are defined using the Neuron C
signed 32-bit data type, which is a structure. Neuron C does not permit
structures to be passed as parameters or returned as values from functions.
When these objects are passed as parameters to C functions, they are passed
as addresses (using the '&' operator) rather than as values. However,
Neuron C does support structure assignment, so signed 32-bit integers may
be assigned to each other with the '=' operator.

No errors are detected by the 32-bit functions. Overflows follow the rules of
the C programming language for integers, namely, they are ignored. Only
the least significant 32 bits of the results are returned.

Initializers can be defined using structure initialization syntax. For example:
s32_type some_number = { 0, 0, 0, 4 }; // initialized to 4 on reset

s32_type another_number = { -1, -1, -1, -16 }; // initialized to -16

3-10 Functions

A number of constants are defined for use by the application if desired.
s32_zero, s32_one, s32_minus_one represent the numbers 0, 1, and -1.

If other constants are desired, they may be converted at runtime from ASCII
strings using the function s32_from_ascii.

EXAMPLE:

s32_type one_million;
when(reset) {

s32_from_ascii("1000000", one_million);
}

Since this function is fairly time consuming, it may be advantageous to pre-
compute constants with the NXT.EXE utility. This program accepts an input
file with declarations using standard integer initializers, and creates an
output file with Neuron C initializers. See the Neuron C Extended Arithmetic
Translator section below.

For example, if the input file contains:
const s32_type one_million = 1000000;

then the output file will contain:
const s32_type one_million = {0x00,0x0f,0x42,0x40} /*
1000000 */;

Users of the NodeBuilder tool can use Code Wizard to create initializer data
for s32_type network variables and configuration parameters. The
NodeBuilder Neuron C debugger can display signed 32-bit integers through
the s32_type shown above.

The LonBuilder’s Neuron C debugger can display signed 32-bit integers as
raw data at a specific address. To examine the value of one or more
contiguous signed 32-bit integer variables, enter the address of the first
variable into the raw data evaluation window, select Raw Data at Address
type, Data Size as quad, Count as the number of variables you wish to
display, and Format as Dec. The data will be displayed as unsigned, even if
it is negative. To view the data as signed, click on the value field, and the
Modify Variable window will show the data in both formats. You can also
modify signed 32-bit integer variables by clicking on the value field, and
entering new data in the usual format for integers.

The signed 32-bit integer arguments are all passed as addresses of
structures. The calling function or task is responsible for declaring storage
for the arguments themselves. Argument lists are ordered so that input
arguments precede output arguments. In all cases, signed 32-bit integer
output arguments may match any of the input arguments to facilitate
operations in place.

Neuron C Reference Guide 3-11

Binary Arithmetic Operators
void s32_add(const s32_type * arg1, const s32_type * arg2,

s32_type * arg3);

Adds two signed 32-bit integers. (arg3 = arg1 + arg2)
void s32_sub(const s32_type * arg1, const s32_type * arg2,

s32_type * arg3);

Subtracts two signed 32-bit integers. (arg3 = arg1 - arg2)
void s32_mul(const s32_type * arg1, const s32_type * arg2,

s32_type * arg3);

Multiplies two signed 32-bit integers. (arg3 = arg1 * arg2)
void s32_div(const s32_type * arg1, const s32_type * arg2,

s32_type * arg3);

Divides two signed 32-bit integers. (arg3 = arg1 / arg2)
void s32_rem(const s32_type * arg1, const s32_type * arg2,

s32_type * arg3);

Returns the remainder of the division of two signed 32-bit integers

(arg3 = arg1 % arg2). The sign of arg3 is always the same as the sign of arg1.
void s32_max(const s32_type * arg1, const s32_type * arg2,

s32_type * arg3);

Returns the maximum of two signed 32-bit integers. (arg3 = max(arg1, arg2)).
void s32_min(const s32_type * arg1, const s32_type * arg2,

s32_type * arg3);

Returns the minimum of two signed 32-bit integers. (arg3 = min(arg1, arg2)).

Unary Arithmetic Operators
void s32_abs(const s32_type * arg1, s32_type * arg2);

Returns the absolute value of a signed 32-bit integer. (arg2 = abs(arg1))
void s32_neg(const s32_type * arg1, s32_type * arg2);

Returns the negative of a signed 32-bit integer. (arg2 = - arg1)

Comparison Operators
boolean s32_eq(const s32_type * arg1, const s32_type * arg2);

Returns TRUE if the first argument is equal to the second argument,
otherwise FALSE. (arg1 == arg2)

boolean s32_ne(const s32_type * arg1, const s32_type * arg2);

Returns TRUE if the first argument is not equal to the second argument,
otherwise FALSE. (arg1 != arg2)

boolean s32_gt(const s32_type * arg1, const s32_type * arg2);

Returns TRUE if the first argument is greater than the second argument,
otherwise FALSE. (arg1 > arg2)

boolean s32_lt(const s32_type * arg1, const s32_type * arg2);

Returns TRUE if the first argument is less than the second argument,
otherwise FALSE. (arg1 < arg2)

boolean s32_ge(const s32_type * arg1, const s32_type * arg2);

Returns TRUE if the first argument is greater than or equal to the second
argument, otherwise FALSE. (arg1 >= arg2)

3-12 Functions

boolean s32_le(const s32_type * arg1, const s32_type * arg2);

Returns TRUE if the first argument is less than or equal to the second
argument, otherwise FALSE. (arg1 <= arg2)

int s32_cmp(const s32_type * arg1, const s32_type * arg2);

Returns +1 if the first argument is greater than the second argument, -1 if it
is less, and 0 if it is equal.

Miscellaneous Signed 32-bit Functions
int s32_sign(const s32_type * arg);

Sign function, returns +1 if the argument is positive, 0 if the argument is
zero, and -1 if the argument is negative.

void s32_inc(s32_type * arg);

Increments a signed 32-bit integer.
void s32_dec(s32_type * arg);

Decrements a signed 32-bit integer.
void s32_mul2(s32_type * arg);

Multiplies a signed 32-bit integer by two.
void s32_div2(s32_type * arg);

Divides a signed 32-bit integer by two.
void s32_rand(s32_type * arg);

Returns a random integer uniformly distributed in the range
[-2,147,483,648 to +2,147,483,647].

Integer Conversions
signed long s32_to_slong(const s32_type * arg);

Converts a signed 32-bit integer to a Neuron C signed long integer

(range 32,768 to +32,767). Overflow is ignored.
unsigned long s32_to_ulong(const s32_type * arg);

Converts a signed 32-bit integer to a Neuron C unsigned long integer

(range 0 to 65,535). Overflow is ignored.
void s32_from_slong(signed long arg1, s32_type * arg2);

Converts a Neuron C signed long integer (range -32,768 to +32,767) to a
signed 32-bit integer.

void s32_from_ulong(unsigned long arg1, s32_type * arg2);

Converts a Neuron C unsigned long integer (range 0 to +65,535) to a signed
32-bit integer.

Conversion of Signed 32-bit to ASCII String
void s32_to_ascii(const s32_type * arg1, char * arg2);

Converts a signed 32-bit integer *arg1 to an ASCII string followed by a
terminating null character. The *arg2 output buffer should be at least 12
bytes long. The general output format is [-]xxxxxxxxxx, with one to nine
digits.

Conversion of ASCII String to Signed 32-bit
void s32_from_ascii(const char * arg1, s32_type * arg2);

Neuron C Reference Guide 3-13

Converts an ASCII string arg1 to a signed 32-bit integer *arg2. The
conversion stops at the first invalid character in the input buffer - there is no
error notification. The acceptable format is [-]xxxxxxxxxx. The number of
digits should not exceed ten. Embedded spaces within the string are not
allowed.

Signed 32-bit Performance
The following numbers are times in milliseconds for the various 32-bit
functions. They were measured using a Neuron Chip with a 10MHz input
clock. These values scale with a faster or slower clock. The measurements
are maximums and averages over random data uniformly distributed in the
range [-2,147,483,648 to +2,147,483,647].

Function Maximum Average
Add/subtract 0.10 0.08
Multiply 2.07 1.34
Divide 3.17 2.76
Remainder 3.15 2.75
Maximum/Minimum 0.33 0.26
Absolute value 0.25 0.12
Negation 0.20 0.20
Arithmetic Comparison 0.33 0.26
Conversion to ASCII 26.95 16.31
Conversion from ASCII 7.55 4.28
Conversion to 16-bit integer 0.12 0.10
Conversion from 16-bit integer 0.10 0.10
Random number generation 0.12 0.11
Sign of number 0.15 0.11
Increment 0.07 0.04
Decrement 0.10 0.04
Multiply by two 0.10 0.10
Divide by two 0.30 0.16

Floating-point Support Functions
The Neuron C compiler does not directly support the use of the ANSI C
arithmetic and comparison operators with floating-point values. However,
there is a complete library of functions for floating-point math. These
functions are listed under Floating-point Math in the previous section. For
example, in standard ANSI C, to evaluate X = A + B * C in floating-point, the
'+' and '*' infix operators may be used as follows:

float X, A, B, C;
X = A + B * C;

With Neuron C, this can be expressed as follows;
float_type X, A, B, C;
fl_mul(&B, &C, &X);
fl_add(&X, &A, &X);

3-14 Functions

The floating-point format can represent numbers in the range of

approximately -1*1038 to +1*1038, with a relative resolution of

approximately ±1*10-7.

A float_type structure data type is defined by means of a typedef in the file
<float.h>. It defines a structure that represents a floating-point number in
IEEE 754 single precision format. This has one sign bit, eight exponent bits
and 23 mantissa bits, and is stored in big-endian order. Processors that store
data in little-endian order represent IEEE 754 numbers in the reverse byte
order. The type float_type is identical to the type used to represent floating-
point network variables. The type declaration is shown here for reference.

typedef struct {
unsigned int : 1;

// 0 = positive, 1 = negative
unsigned int MS_exponent : 7;
unsigned int LS_exponent : 1;
unsigned int MS_mantissa : 7;
unsigned long LS_mantissa;

} float_type;

See the IEEE 754 standard documentation for more details.

All the constants and functions in <float.h> are defined using the Neuron C
floating-point format float_type, which is a structure. Neuron C does not
permit structures to be passed as parameters or returned as values from
functions. When these objects are passed as parameters to C functions, they
are passed as addresses (using the '&' operator) rather than as values.
However, Neuron C does support structure assignment, so floating-point
objects may be assigned to each other with the '=' operator.

A global variable fl_error stores the last error detected by the floating-point
functions. If error detection is desired in a calculation, application programs
should set the variable fl_error to the value FL_OK before beginning a
series of floating-point operations, and check the value of the variable at the
end. The errors detected are as follows:

FL_UNDERFLOW A non-zero number could not be
represented as it was too small for the
floating-point representation. Zero was
returned instead.

 FL_INVALID_ARG A floating-point number could not be
converted to integer because it was out of
range. An attempt was made to take the
square root of a negative number.

 FL_OVERFLOW A number could not be represented as it
was too large for the floating-point
representation.

 FL_DIVIDE_BY_ZERO An attempt was made to divide by zero.
This does not cause the Neuron Chip
firmware DIVIDE_BY_ZERO error to be
logged.

A number of #define literals are defined for use by the application to
initialize floating-point structures. FL_ZERO, FL_HALF, FL_ONE,

Neuron C Reference Guide 3-15

FL_MINUS_ONE and FL_TEN may be used to initialize floating-point
variables to 0.0, 0.5, 1.0, -1.0, and 10.0 respectively.

EXAMPLE:

float_type some_number = FL_ONE;
// initialized to 1.0 at reset

Four floating-point constants are pre-defined: fl_zero, fl_half, fl_one,
fl_minus_one, and fl_ten represent 0.0, 0.5, 1.0, -1.0, and 10.0 respectively.

EXAMPLE:

fl_mul(&some_number, &fl_ten, &some_number);
// multiply some number by 10.0

If other constants are desired, they may be converted at runtime from ASCII
strings using the fl_from_ascii() function.

EXAMPLE:

float_type ninety_nine; // constant 99.0
when(reset) {

fl_from_ascii("99", &ninety_nine);
// initialize constant

}

Since this function is fairly time consuming, it may be advantageous to pre-
compute constants with the NXT utility. This program accepts an input file
with declarations using standard floating-point initializers, and creates an
output file with Neuron C initializers. It recognizes any data type of the form
SNVT_xxx_f, as well as the type float_type. See the Neuron C Extended
Arithmetic Translator section below.

For example, if the input file contains:
network input float_type var1 = 1.23E4;
const float_type var2 = -1.24E5;
SNVT_temp_f var3 = 12.34;

then the output file will contain:
network input float_type var1 = {0,0x46,0,0x40,0x3000} /* 1.23E4 */;
const float_type var2 = {1,0x47,1,0x72,0x3000} /* -1.24E5 */;
SNVT_temp_f var3 = {0,0x41,0,0x45,0x70a4} /* 12.34 */;

Users of the NodeBuilder tool can also use Code Wizard to create initializer
data for float_type objects.

Variables of a floating-point network variable type are compatible with the
Neuron C float_type format. The ANSI C language requires an explicit type
cast to convert from one type to another. Structure types may not be cast,
but pointers to structures can. The following example shows how a local
variable of type float_type may be used to update an output network
variable of type SNVT_angle_f. EXAMPLE:

float_type local_angle; // internal variable
network output SNVT_angle_f NV_angle; // network variable
NV_angle = * (SNVT_angle_f *) & local_angle;

The following example shows how an input network variable of type
SNVT_length_f may be used as an input parameter to one of the functions
in this library.

3-16 Functions

EXAMPLE:

network input SNVT_length_f NV_length; // network variable
when(nv_update_occurs(NV_length)) {

if(fl_eq((const float_type *) & NV_length, & fl_zero))
// compare length to zero

The IEEE 754 format defines certain special numbers such as Infinity, Not-a-
Number and Denormalized Numbers. This library does not produce the
correct results when operating on these special numbers. Also, the treatment
of roundoff, overflow, underflow, and other error conditions does not conform
to the standard.

The NodeBuilder debugger can display floating-point objects according to
their underlying float_type structure.

The LonBuilder debugger can display floating-point objects as raw data at a
specific address. To examine the value of one or more contiguous floating-
point variables, enter the address of the first variable into the raw data
evaluation window, select Raw Data at Address type, Data Size as quad,
Count as the number of variables you wish to display, and Format as Float.
You can also modify floating-point variables by clicking on the value field,
and entering new data in the usual format for floating-point numbers.

The floating-point function arguments are all passed by pointer reference.
The calling function or task is responsible for declaring storage for the
arguments themselves. Argument lists are ordered so that input arguments
precede output arguments. In all cases, floating-point output arguments may
match any of the input arguments to facilitate operations in place.

Binary Arithmetic Operators
void fl_add(const float_type * arg1, const float_type * arg2,

float_type * arg3);

Adds two floating-point numbers. (arg3 = arg1 + arg2)

void fl_sub(const float_type * arg1, const float_type * arg2,

float_type * arg3);

Subtracts two floating-point numbers. (arg3 = arg1 - arg2)

void fl_mul(const float_type * arg1, const float_type * arg2,

float_type * arg3);

Multiplies two floating-point numbers. (arg3 = arg1 * arg2)

void fl_div(const float_type * arg1, const float_type * arg2,

float_type * arg3);

Divides two floating-point numbers. (arg3 = arg1 / arg2)

void fl_max(const float_type * arg1, const float_type * arg2,

float_type * arg3);

Finds the max of two floating-point numbers. (arg3 = max(arg1, arg2))

void fl_min(const float_type * arg1, const float_type * arg2,

float_type * arg3);

Neuron C Reference Guide 3-17

Finds the min of two floating-point numbers. (arg3 = min(arg1, arg2))

Unary Arithmetic Operators
void fl_abs(const float_type * arg1, float_type * arg2);

Returns the absolute value of a floating-point number.
(arg2 = abs(arg1))

void fl_neg(const float_type * arg1, float_type * arg2);

Returns the negative of a floating-point number.
(arg2 = - arg1)

void fl_sqrt(const float_type * arg1, float_type * arg2);

Returns the square root of a floating-point number.
(arg2 = � arg1)

void fl_trunc(const float_type * arg1, float_type * arg2);

Returns the whole number part of a floating-point number. Truncation is
towards zero. (arg2 = trunc(arg1)) For example, trunc(-3.45) = -3.0

void fl_floor(const float_type * arg1, float_type * arg2);

Returns the largest whole number less than or equal to a given floating-point
number. Truncation is towards minus infinity. (arg2 = floor(arg1)) For
example, floor(-3.45) = -4.0

void fl_ceil(const float_type * arg1, float_type * arg2);

Returns the smallest whole number greater than or equal to a given floating-
point number. Truncation is towards plus infinity.
(arg2 = ceil(arg1)) For example, ceil(-3.45) = -3.0

void fl_round(const float_type * arg1, float_type * arg2);

Returns the nearest whole number to a given floating-point number.

(arg2 = round(arg1)) For example, round(-3.45) = -3.0
void fl_mul2(const float_type * arg1, float_type * arg2);

Multiplies a floating-point number by two.
(arg2 = arg1 * 2.0)

void fl_div2(const float_type * arg1, float_type * arg2);

Divides a floating-point number by two.
(arg2 = arg1 / 2.0)

Comparison Operators
boolean fl_eq(const float_type * arg1, const float_type * arg2);

Returns TRUE if the first argument is equal to the second argument,
otherwise FALSE. (arg1 == arg2)

boolean fl_ne(const float_type * arg1, const float_type * arg2);

Returns TRUE if the first argument is not equal to the second argument,
otherwise FALSE. (arg1 != arg2)

boolean fl_gt(const float_type * arg1, const float_type * arg2);

Returns TRUE if the first argument is greater than the second argument,
otherwise FALSE. (arg1 > arg2)

boolean fl_lt(const float_type * arg1, const float_type * arg2);

Returns TRUE if the first argument is less than the second argument,
otherwise FALSE. (arg1 < arg2)

boolean fl_ge(const float_type * arg1, const float_type * arg2);

3-18 Functions

Returns TRUE if the first argument is greater than or equal to the second
argument, otherwise FALSE. (arg1 >= arg2)

boolean fl_le(const float_type * arg1, const float_type * arg2);

Returns TRUE if the first argument is less than or equal to the second
argument, otherwise FALSE. (arg1 <= arg2)

int fl_cmp(const float_type * arg1, const float_type * arg2);

Returns +1 if the first argument is greater than the second argument, -1 if it
is less, and 0 if it is equal.

Miscellaneous Floating-point Functions
int fl_sign(const float_type * arg);

Sign function, returns +1 if the argument is positive, 0 if the argument is
zero, and -1 if the argument is negative.

void fl_rand(float_type * arg);

Returns a random number uniformly distributed in the range [0.0, 1.0) -
that is, including the number 0.0, but not including the number 1.0.

Floating-point to/from Integer Conversions
signed long fl_to_slong(const float_type * arg);

Converts a floating-point number to a Neuron C signed long integer (range -
32,768 to +32,767). Truncation is towards zero. For example,
fl_to_slong(-4.56) = -4. If the closest integer is desired, call fl_round()
before calling fl_to_slong().

unsigned long fl_to_ulong(const float_type * arg);

Converts a floating-point number to a Neuron C unsigned long integer (range
0 to 65,535). Truncation is towards zero. For example, fl_to_ulong(4.56) =
4. If the closest integer is desired, call fl_round() before calling
fl_to_ulong().

void fl_to_s32(const float_type * arg1, void * arg2);

Converts a floating-point number to a signed 32-bit integer (range
±2,147,483,647). The second argument is the address of a four-byte array,
compatible with the signed 32-bit integer type s32_type. Truncation is
towards zero. For example, fl_to_s32(-4.56) = -4. If the closest integer is
desired, call fl_round() before calling fl_to_s32().

void fl_from_slong(signed long arg1, float_type * arg2);

Converts a Neuron C signed long integer (range -32,768 to +32,767) to a
floating-point number.

void fl_from_ulong(unsigned long arg1, float_type * arg2);

Converts a Neuron C unsigned long integer (range 0 to +65,535) to a floating-
point number.

void fl_from_s32(const void * arg1, float_type * arg2);

Converts a signed 32-bit number (range ±2,147,483,647) to a floating-point
number. The first argument is the address of a four-byte array.

Conversion of Floating-point to ASCII String
void fl_to_ascii(const float_type * arg1, char * arg2, int decimals,
unsigned buf_size);

Neuron C Reference Guide 3-19

Converts a floating-point number *arg1 to an ASCII string followed by a
terminating null. decimals is the required number of decimal places after
the point. buf_size is the length of the output buffer pointed to by arg2,
including the terminating null. If possible, the number is converted using
non-scientific notation, for example [-]xxx.xxxxx. If the result would not fit
in the buffer provided, the number is converted using scientific notation, for
example [-]x.xxxxxxE[-]nn. This routine uses repeated multiplication and
division, and can be time-consuming, depending on the input data. If
decimals is 0, the buffer will include a trailing decimal point. If decimals is
-1, there will be no trailing decimal point. The number is rounded to the
specified precision.

Example: Converting the number -12.34567, with a buf_size of 10.

decimals output string
5 -12.34567
4 -12.3457
3 -12.346
2 -12.35
1 -12.3
0 -12.
-1 -12

void fl_to_ascii_fmt(const float_type * arg1, char * arg2, int
decimals, unsigned buf_size, format_type format);

Converts a floating-point number *arg1 to an ASCII string followed by a
terminating null. This function operates in the same way as fl_to_ascii,
except that the caller specifies the output format. The format parameter may
be set to FMT_DEFAULT, FMT_FIXED or FMT_SCIENTIFIC to specify
the default conversion (same as fl_to_ascii), non-scientific notation or
scientific notation respectively.

Conversion of ASCII String to Floating-point
void fl_from_ascii(const char * arg1, float_type * arg2);

Converts an ASCII string to a floating-point number. The conversion stops at
the first invalid character in the input buffer - there is no error notification.
The acceptable format is:

 [+/-][xx][.][xxxxx][E/e[+/-]nnn].

 For example: 0, 1, .1, 1.2, 1E3, 1E-3, -1E1.

There should be no more than nine significant digits in the mantissa portion
of the number, or else the results are unpredictable. A significant digit is a
digit following any leading zeroes. Embedded spaces within the number are
also not allowed. This routine uses repeated multiplication and division, and
can be time-consuming, depending on the input data. Example:
0.00123456789E4 is acceptable. 123.4567890 is not acceptable because it has
10 significant digits and 123 E4 is not acceptable because it has an embedded
space.

Floating-Point Performance
The following numbers are times in milliseconds for the various functions in
the floating-point library. They were measured using a Neuron Chip with a
10MHz input clock. These values scale with faster or slower input clocks.

3-20 Functions

The measurements are maximums and averages over random data
logarithmically distributed in the range 0.001 to 1,000,000.

Function Maximum Average
Add 0.56 0.36
Subtract 0.71 0.5
Multiply 1.61 1.33
Divide 2.43 2.08
Square Root 10.31 8.89
Multiply/Divide by two 0.15 0.13
Maximum 0.61 0.53
Minimum 0.66 0.60
Integer Floor 0.25 0.21
Integer Ceiling 0.92 0.63
Integer Rounding 1.17 1.01
Integer Truncation 0.23 0.17
Negation 0.10 0.08
Absolute Value 0.10 0.08
Arithmetic Comparison 0.18 0.09
Conversion to ASCII 22.37 12.49
Conversion from ASCII 27.54 22.34
Conversion to 16-bit integer 2.84 1.03
Conversion from 16-bit integer 2.58 0.75
Conversion to 32-bit integer 5.60 2.71
Conversion from 32-bit integer 0.99 0.72
Random number generation 2.43 0.43
Sign of number 0.02 0.02

Using the NXT Neuron C Extended Arithmetic
Translator

You can use the NXT Neuron C Extended Arithmetic Utility to create
initializers for signed 32-bit integers and floating-point variables in a
Neuron C program. To use the NXT utility, open a Windows command
prompt and enter the following command:

 nxt input-file output-file

 (where input-file contains Neuron C variable definitions)

The source file can contain only one variable per line. Initializers of
float_type, and SNVT_<xxx>_f variables are converted appropriately.

The output file is generated with properly converted initializers. Unaffected
lines are output unchanged. The output file can be included in a Neuron C
application with the #include directive. The output file is overwritten if it
exists and was generated originally by this program.

In some cases, such as structs and typedefs, the translator will be unable to
identify signed 32-bit or floating-point initializers. These can be identified by
adding '‘s’ or ‘S’ (for signed 32-bit integers), or ‘f' or 'F' (for floating-point
values) to the end of the constant.

Neuron C Reference Guide 3-21

As an example, if the input file contains:
s32_type var1 = 12345678;
struct_type var2 = {0x5, "my_string", 3333333S};
float_type var1 = 3.66;
struct_type var2 = {5.66f, 0x5, "my_string"};

then the output file will contain:
s32_type var1 = {0x00,0xbc,0x61,0x4e} /* 12345678 */;
struct_type var2 = {0x5,

"my_string", {0x00,0x32,0xdc,0xd5} /* 3333333 */};

float_type var1 = {0,0x40,0,0x6a,0x3d71} /* 3.66 */;
struct_type var2 = {{0,0x40,1,0x35,0x1eb8} /* 5.66 */, 0x5,

"my_string"};

NOTE: Users of the NodeBuilder Development Tool can also use Code
Wizard to generate initializer data for s32_type and float_type network
variables or configuration properties.

Function Directory
abs() BUILT-IN FUNCTION
type abs (a);

The abs() built-in function returns the absolute value of a. The argument a
can be of type short or long. The return type is unsigned short if a is
short, or unsigned long if a is long.

EXAMPLE:

int i;
long l;

i = abs(-3);
l = abs(-300);

3-22 Functions

access_address() FUNCTION
#include <access.h>
const address_struct * access_address (int index);

The access_address() function returns a const pointer to the address
structure which corresponds to the index parameter. This pointer can be
stored, used to perform a structure copy, or used in other ways common to C
pointers, except that the pointer cannot be used for writes.

See the Neuron Chip or Smart Transceiver data book for a description of the
data structure.

EXAMPLE:

#include <access.h>
address_struct addr_copy;
addr_copy = *(access_address(2));

access_alias() FUNCTION
#include <access.h>
const alias_struct * access_alias (int index);

The access_alias() function returns a const pointer to the alias structure
which corresponds to the index parameter. This pointer can be stored, used
to perform a structure copy, or used in other ways common to C pointers,
except that the pointer cannot be used for writes.

The Neuron 3120 Chip with version 4 firmware does not support aliasing.

See the Neuron Chip or Smart Transceiver data book for a description of the
data structure.

EXAMPLE:

#include <access.h>
alias_struct alias_copy;

alias_copy = *(access_alias(2));

access_domain() FUNCTION
#include <access.h>
const domain_struct * access_domain (int index);

The access_domain() function returns a const pointer to the domain
structure which corresponds to the index parameter. This pointer can be
stored, used to perform a structure copy, or used in other ways common to C
pointers, except that the pointer cannot be used for writes.

See the Neuron Chip or Smart Transceiver data book for a description of the
data structure.

Neuron C Reference Guide 3-23

EXAMPLE:

#include <access.h>
domain_struct domain_copy;

domain_copy = *(access_domain(0));

access_nv() FUNCTION
#include <access.h>
const nv_struct * access_nv (int index);

The access_nv() function returns a const pointer to the network variable
configuration structure which corresponds to the index parameter. This
pointer can be stored, used to perform a structure copy, or used in other ways
common to Neuron C pointers, except that the pointer cannot be used for
writes.

See the Neuron Chip or Smart Transceiver data book for a description of the
data structure.

EXAMPLE:

#include <access.h>
network output int my_nv;
nv_struct nv_copy;

nv_copy = *(access_nv(nv_table_index(my_nv));

addr_table_index() BUILT-IN FUNCTION
unsigned int addr_table_index (message-tag);

The addr_table_index() built-in function is used to determine the address
table index of a message tag as allocated by the Neuron C compiler. The
returned value is in the range of 0 to 14.

The Neuron C compiler will not permit this function to be used for a non-
bindable message tag (i.e. declared with the bind_info(nonbind) option).

EXAMPLE:

int mt_index;
msg_tag my_mt;

mt_index = addr_table_index(my_mt);

3-24 Functions

ansi_memcpy() FUNCTION
#include <mem.h>
void * ansi_memcpy (void *dest, void *src, unsigned long len);

The ansi_memcpy() function copies a block of len bytes from src to dest. It
returns the first argument, which is a pointer to the dest memory area. This
function cannot be used to copy overlapping areas of memory, or to write into
EEPROM or flash memory.

The ansi_memcpy() function as implemented here conforms to the ANSI
definition for memcpy(), as it returns a pointer to the destination array.
See the function memcpy() for a non-conforming implementation (does not
have a return value), which is a more efficient implementation if the return
value is not needed. See also the descriptions for the ansi_memset(),
eeprom_memcpy(), memccpy(), memchr(), memcmp(), memcpy(),
and memset() functions.

EXAMPLE:

#include <mem.h>

unsigned buf[40];
unsigned * p;

p = ansi_memcpy(buf, "Hello World", 11);

ansi_memset() FUNCTION
#include <mem.h>
void * ansi_memset (void *p, int c, unsigned long len);

The ansi_memset() function sets the first len bytes of the block pointed to
by p to the character c. It also returns the value p. This function cannot be
used to write into EEPROM or flash memory.

The ansi_memset() function as implemented here conforms to the ANSI
definition for memset(), as it returns the pointer p. See the function
memset() for a non-conforming implementation (does not have a return
value), which is a more efficient implementation if the return value is not
needed. See also the descriptions for the ansi_memcpy(),
eeprom_memcpy(), memccpy(), memchr(), memcmp(), and
memcpy() functions.

EXAMPLE:

#include <mem.h>

unsigned target[20];
unsigned * p;

p = ansi_memset(target, 0, 20);

Neuron C Reference Guide 3-25

application_restart() FUNCTION
#include <control.h>
void application_restart (void);

The application_restart() function restarts the application program
running on the application processor only. The network and MAC processors
are unaffected. When an application is restarted, the when(reset) event
becomes TRUE.

EXAMPLE:

#define MAX_ERRS 50 int error_count;
...
when (error_count > MAX_ERRS)
{

application_restart();
}

bcd2bin() BUILT-IN FUNCTION
unsigned long bcd2bin (struct bcd * a);

struct bcd {

unsigned d1:4,
d2:4,
d3:4,
d4:4,
d5:4,
d6:4;

};

The bcd2bin() built-in function converts a binary coded decimal structure to
a binary number. The structure definition is built into the compiler. The
most significant digit is d1. Note that d1 should always be 0.

EXAMPLE:

struct bcd digits;
unsigned long value;
memset(&digits, 0, 3);
digits.d3=1;
digits.d4=2;
digits.d5=3;
digits.d6=4;
value = bcd2bin(&digits);

//value now contains 1234

3-26 Functions

bin2bcd() BUILT-IN FUNCTION
void bin2bcd (unsigned long value, struct bcd * p);

struct bcd (see bcd2bin, above)

The bin2bcd() built-in function converts a binary number to a binary coded
decimal structure.

EXAMPLE:

struct bcd digits;
unsigned long value;
...
value = 1234;
bin2bcd(value, &digits);
// digits.d1 now contains 0
// digits.d2 now contains 0
// digits.d3 now contains 1
// digits.d4 now contains 2
// digits.d5 now contains 3
// digits.d6 now contains 4

clear_status() FUNCTION
#include <status.h>
void clear_status (void);

The clear_status() function clears a subset of the information in the status
structure (see the retrieve_status() function described later in this chapter).
The information cleared is the statistics information, the reset cause register,
and the error log.

EXAMPLE:

when (timer_expires(statistics_reporting_timer))
{

retrieve_status(status_ptr); // get current statistics
report_statistics(status_ptr); // check it all out
clear_status();

}

clr_bit() FUNCTION
#include <byte.h>
void clr_bit (void * array, unsigned bitnum);

The clr_bit() function clears a bit in a bit array pointed to by array. Bits are
numbered from left to right in each byte, so that the first bit in the array is
the most significant bit of the first byte in the array. Like all arrays in C,
this first element corresponds to index 0 (bitnum 0). See also the set_bit()
function and the tst_bit() function.

Neuron C Reference Guide 3-27

EXAMPLE:

#include <byte.h>

unsigned short a[4];

memset(a, 0xFF, 4); // Sets all bits
clr_bit(a, 4); // Clears a[0] to 0xF7 (5th bit)

crc8() FUNCTION
#include <stdlib.h>
unsigned crc8 (unsigned crc, unsigned new-data);

The crc8() function iteratively calculates an 8-bit CRC (cyclic redundancy
check) over an array of data. This function is useful in conjunction with the
support for Touch I/O object, but can also be used for any purposes where a
CRC is needed.

EXAMPLE:

#include <stdlib.h>
unsigned i; // Or 'unsigned long' depending on SIZE
unsigned crc, data[SIZE];

crc = 0;
for (i = 0; i < SIZE; ++i) {

// Combine partial CRC with next data byte
crc = crc8(crc, data[i]);

}

crc16() FUNCTION
#include <stdlib.h>
unsigned long crc16 (unsigned long crc, unsigned new_data);

The crc16() function iteratively calculates a 16-bit CRC (cyclic redundancy
check) over an array of data bytes. This function is useful in conjunction with
the support for Touch I/O object, but can also be used for any purposes where
a CRC is needed.

EXAMPLE:

#include <stdlib.h>

unsigned i; // Or 'unsigned long' depending on SIZE
unsigned long crc;
unsigned data[SIZE];

crc = 0;
for (i = 0; i < SIZE; ++i) {

// Combine partial CRC with next data value
crc = crc16(crc, data[i]);

}

3-28 Functions

delay() FUNCTION
void delay (unsigned long count);

count is a value between 1 and 33333. The formula for
determining the duration of the delay is based on the
count parameter and the input clock (see below).

The delay() function allows an application to suspend processing for a given
time. This function provides more precise timing than can be achieved with
application timers.

The formulas for determining the duration of the delay are listed in the
following table:

Input Clock Delay in microseconds

40 MHz 0.15*(max(1,min(65535,count*4))*42+166)

20 MHz 0.3*(max(1,min(65535,count*2))*42+146)

10 MHz 0.6*(max(1,count)*42+115)

5 MHz 1.2*((max(1,floor(count/2))*42)+142)

2.5 MHz 2.4*((max(1,floor(count/4))*42)+159)

1.25 MHz 4.8*((max(1,floor(count/8))*42)+176)

625kHz 9.6*((max(1,floor(count/16))*42)+193)

This formula yields durations in the range of 88.8 microseconds to 840
milliseconds by increments of 25.2 microseconds with a 10 MHz input clock.
Using a count above 33,333 may cause the watchdog timer to time out. (See
also the scaled_delay() function, which generates a delay that scales with
the input clock.)

NOTE: Because of the multiplier used by delay() and the potential for a
watchdog timeout at 20MHz and 40MHz operation, the maximum inputs to
delay () are 16666 at 20MHz and 8333 at 40MHz. Timing intervals greater
than the watchdog interval must be done via software timers or via a user
routines that calls delay() and watchdog_update() in a loop.

EXAMPLE:

IO_4 input bit io_push_button;
boolean debounced_button_state;

when(io_changes(io_push_button))
{

delay(400); //delay approx. 10 msec at any clock rate
debounced_button_state=(boolean)io_in(io_push_button);

}

Neuron C Reference Guide 3-29

eeprom_memcpy() FUNCTION
void eeprom_memcpy (void * dest, void * src, unsigned short len);

The eeprom_memcpy() function copies a block of len bytes from src to dest.
It does not return any value. This function supports destination addresses
that reside in EEPROM or flash memory, where the normal memcpy()
function does not. This function supports a maximum length of 255 bytes.

See also the descriptions for the ansi_memcpy(), ansi_memset(),
memccpy(), memchr(), memcmp(), memcpy(), and memset()
functions.

EXAMPLE:

#pragma relaxed_casting_on
eeprom far widget[100];
far ram_buf[100];

eeprom_memcpy(widget, ram_buf, 100);

Because the compiler regards a pointer to a location in EEPROM or FLASH
as a pointer to constant data, #pragma relaxed_casting_on must be used
to allow for the const attribute to be removed from the first argument, using
an implicit or explicit cast operation. Note that a compiler warning will still
occur as a result of the const attribute being removed by cast operation.

error_log() FUNCTION
#include <control.h>
void error_log (unsigned int error_num);

error_num is a decimal number between 1 and 127.

The error_log() function writes the error number into a dedicated location
in EEPROM. Network tools can use the query status network diagnostic
command to read the last error. The LonBuilder and NodeBuilder Neuron C
debuggers maintain a log of the last 25 error messages. On a Neuron
emulator, the Neuron firmware adds a delay of up to 70 msec between writes
to the error log to give the PC time to retrieve the last value.

The NodeBuilder Errors Guide lists the error numbers that are used by the
Neuron Chip firmware. These are in the range 128 ... 255. The application
uses error numbers 1 ... 127.

EXAMPLE:

#define MY_ERROR_CODE 1
...
when (nv_update_fails)
{

error_log(MY_ERROR_CODE);
}

3-30 Functions

fblock_director() BUILT-IN FUNCTION
void fblock_director (unsigned int index, int cmd);

index is a decimal number between 0 and 254.

cmd is a decimal number between –128 and 127.

The fblock_director() built-in function is a special compiler function that
uses a Neuron C firmware assist to call the director function associated with
the functional block whose global index is index. If the index is out of range,
or the functional block does not have a director function, the
fblock_director built-in function does nothing except return. Otherwise, it
calls the director function associated with the functional block specified, and
passes the cmd parameter on to that director function.

EXAMPLE:

fblock_director(myFB::global_index, 3);

Floating-point Support FUNCTIONS
void fl_abs (const float_type * arg1, float_type * arg2);

void fl_add (const float_type * arg1, const float_type * arg2, float_type *
arg3);

void fl_ceil (const float_type * arg1, float_type * arg2);

int fl_cmp (const float_type * arg1, const float_type * arg2);

void fl_div (const float_type * arg1, const float_type * arg2, float_type *
arg3);

void fl_div2 (const float_type * arg1, float_type * arg2);

void fl_eq (const float_type * arg1, const float_type * arg2);

void fl_floor (const float_type * arg1, float_type * arg2);

void fl_from_ascii (const char * arg1, float_type * arg2);

void fl_from_s32 (const void * arg1, float_type * arg2);

void fl_from_slong (signed long arg1, float_type * arg2);

void fl_from_ulong (unsigned long arg1, float_type * arg2);

void fl_ge (const float_type * arg1, const float_type * arg2);

void fl_gt (const float_type * arg1, const float_type * arg2);

void fl_le (const float_type * arg1, const float_type * arg2);

void fl_lt (const float_type * arg1, const float_type * arg2);

void fl_max (const float_type * arg1, const float_type * arg2, float_type *
arg3);

void fl_min (const float_type * arg1, const float_type * arg2, float_type *
arg3);

void fl_mul (const float_type * arg1, const float_type * arg2, float_type *
arg3);

void fl_mul2 (const float_type * arg1, float_type * arg2);

void fl_ne (const float_type * arg1, const float_type * arg2);

void fl_neg (const float_type * arg1, float_type * arg2);

Neuron C Reference Guide 3-31

void fl_rand (float_type * arg1);

void fl_round (const float_type * arg1, float_type * arg2);

int fl_sign (const float_type * arg1);

void fl_sqrt (const float_type * arg1, float_type * arg2);

void fl_sub (const float_type * arg1, const float_type * arg2, float_type *
arg3);

void fl_to_ascii (const float_type * arg1, char * arg2, int decimals, unsigned
buf-size);

void fl_to_ascii_fmt (const float_type * arg1, char * arg2, int decimals,
 unsigned buf-size, format_type format);

void fl_to_s32 (const float_type * arg1, void * arg2);

signed long fl_to_slong (const float_type * arg2);

unsigned long fl_to_ulong (const float_type * arg2);

void fl_trunc (const float_type * arg1, float_type * arg2);

These functions are described under Floating-point Support Functions earlier
in this chapter.

flush() FUNCTION
#include <control.h>
void flush (boolean comm_ignore);

comm_ignore indicates whether the Neuron firmware should ignore
communications channel activity. Specify TRUE if the
Neuron firmware should ignore any further incoming
messages. Specify FALSE if the Neuron firmware
should continue to accept incoming messages.

The flush() function causes the Neuron firmware to monitor the status of all
outgoing and incoming messages. The flush_completes event becomes
TRUE when all outgoing transactions have been completed and no more
incoming messages are outstanding. For unacknowledged messages,
“completed” means that the message has been fully transmitted by the MAC
layer. For acknowledged messages, “completed” means that the completion
code has been processed. In addition, all network variable updates must be
propagated before the flush can be considered complete.

3-32 Functions

EXAMPLE:

boolean nothing_to_do;
...
when (nothing_to_do)
{

// Getting ready to sleep
...

flush(TRUE);
}

when (flush_completes)
{

// Go to sleep
sleep();

}

flush_cancel() FUNCTION
#include <control.h>
void flush_cancel (void);

The flush_cancel() function cancels a flush in progress.

EXAMPLE:

boolean nothing_to_do;
...
when (nv_update_occurs)
{

if (nothing_to_do) {
// was getting ready to sleep but received an input NV

nothing_to_do = FALSE;
flush_cancel();

}
}

flush_wait() FUNCTION
#include <control.h>
void flush_wait (void);

The flush_wait() function causes an application program to enter
preemption mode, during which all outstanding network variable and
message transactions are completed. When a program switches from
asynchronous to direct event processing, flush_wait() is used to ensure that
all pending asynchronous transactions are completed before direct event
processing begins.

During preemption mode, only pending completion events (for example,
msg_completes, nv_update_fails) and pending response events (for
example, resp_arrives, nv_update_occurs) are processed. When this
processing is complete, flush_wait() returns. The application program can
now process network variables and messages directly and need not concern

Neuron C Reference Guide 3-33

itself with outstanding completion events and responses from earlier
transactions.

EXAMPLE:

msg_tag TAG1;
network output int NV1;

when (...)
{

msg_out.tag = TAG1;
msg_out.code = 3;
msg_send();

flush_wait();

NV1 = 3;
while (TRUE) {

post_events();
if (nv_update_completes(NV1))

break;
}

when (msg_completes(TAG1))
{

...
}

get_fblock_count() BUILT-IN FUNCTION
unsigned int get_fblock_count ();

The get_fblock_count() built-in function is a compiler special function that
returns the number of functional block (fblock) declarations in the program.
Note that for an array of functional blocks, each element counts as a separate
fblock declaration.

EXAMPLE:

unsigned numFBs;

numFBs = get_fblock_count();

get_nv_count() BUILT-IN FUNCTION
unsigned int get_nv_count ();

The get_nv_count() built-in function is a compiler special function that
returns the number of network variable (NV) declarations in the program.
Note that for each network variable array, each element counts as a separate
network variable.

3-34 Functions

EXAMPLE:

network input SNVT_time_stamp ni[4];
unsigned numNVs;

numNVs = get_nv_count(); // Returns ‘4’ in this case

get_tick_count() FUNCTION
unsigned int get_tick_count(void);

The get_tick_count() function returns the current system time. The tick
interval, in microseconds, is defined by the literal TICK_INTERVAL. This
function is useful for measuring durations of less than 50ms at 40MHz. The
tick interval scales with the input clock.

EXAMPLE:

unsigned int start, delta;

start = get_tick_count();
...
delta = get_tick_count()-start;

go_offline() FUNCTION
#include <control.h>
void go_offline (void);

The go_offline() function takes an application offline. This function call has
the same effect on the device as receiving a network management offline
request. The offline request takes effect as soon as the task that called
go_offline() exits. When that task exits, the when(offline) task is
executed and the application stops.

When a network management online request is received, the when(online)
task is executed and the application resumes execution.

When an application goes offline, all outstanding transactions are
terminated. To ensure that any outstanding transactions complete normally,
the application can call flush_wait() in the when(offline) task.

EXAMPLE:

boolean nonrecoverable;
...
when (nonrecoverable) {

go_offline();
}

when (offline)
{

flush_wait();
// process shut-down command

}

Neuron C Reference Guide 3-35

go_unconfigured() FUNCTION
#include <control.h>
void go_unconfigured (void);

The go_unconfigured() function puts the device into an unconfigured state.
It also overwrites all the domain information, which clears authentication
keys as well.

EXAMPLE:

if (
(io_in(io_fast_for)==PUSHED) &&
(io_in(io_set_time)==PUSHED) &&
(io_in(io_chan_sel_9)==PUSHED))
// erase network configuration info from this device

go_unconfigured();

high_byte() BUILT-IN FUNCTION
unsigned short high_byte (unsigned long a);

The high_byte() built-in function extracts the upper single-byte value from
the double-byte operand a. This function operates without regard to
signedness. See also the description for the functions low_byte(),
make_long(), and swap_bytes().

EXAMPLE:

short b;
long a;

a = 258; // Hex value 0x0102
b = high_byte(a); // b now contains the value 0x01

3-36 Functions

io_change_init() BUILT-IN FUNCTION
void io_change_init (input-io-object-name [, init-value]);

input-io-object-name specifies the I/O object name, which corresponds to
io-object-name in the I/O declaration.

init-value sets the initial reference value used by the
io_changes event. If this parameter is omitted, the
object’s current value is used as the initial reference
value. This parameter may be short or long as
needed.

The io_change_init() built-in function initializes the I/O object for the
io_changes event. If this function is not used, the I/O object’s initial
reference value defaults to 0.

EXAMPLE:

IO_4 input ontime signal;

when (reset)
{

// Set comparison value for 'signal' to its current
value

io_change_init(signal);
}
...
when (io_changes(signal) by 10)
{

...
}

io_edgelog_preload() BUILT-IN FUNCTION
void io_edgelog_preload (unsigned long value);

value A value between 1 and 65,535 defining the maximum
value for each period measurement.

The io_edgelog_preload() built-in function is optionally used with the
edgelog I/O object. The value parameter defines the maximum value, in
units of the clock period, for each period measurement, and may be any value
from 1 to 65,535. If the period exceeds the maximum value, the io_in() call
is terminated.

The default maximum value is 65,535, which provides the maximum timeout
condition. By setting a smaller maximum value with this function, a
Neuron C program can shorten the length of the timeout condition. This
function need only be called once, but can be called multiple times to change
the maximum value. The function can be called from a when(reset) task to
automatically reduce the maximum count after every start-up.

Neuron C Reference Guide 3-37

If a preload value is specified, it must be added to the value returned by
io_in(). The resulting addition may cause an overflow, but this is normal.

EXAMPLE:

IO_4 input edgelog elog;

when (reset) {
io_edgelog_preload(0x4000); // One fourth timeout

// value: 16,384

// 65,535
}

io_in() BUILT-IN FUNCTION
return-value io_in (input-io-object-name [, args]);

return-value is the value returned by the function. See below for
details.

input-io-object-name specifies the I/O object name, which corresponds to
io-object-name in the I/O declaration.

args are arguments, which depend on the I/O object type,
as described below. Some of these arguments can also
appear in the I/O object declaration. If specified in
both places, the value of the function argument
overrides the declared value for that call only. If the
value is not specified in either the function argument
or the declaration, the default value is used.

The io_in() built-in function reads data from an input object.

The include file <io_types.h> contains optional type definitions for each of
the I/O object types. The type names are the I/O object type name followed by
“_t”. For example bit_t is the type name for a bit I/O object.

The data type of the return-value is listed below for each object type .

Object Type Returned Data Type

bit input unsigned short

bitshift input unsigned long

byte input unsigned short

dualslope input unsigned long

edgelog input unsigned short

i2c unsigned short

infrared input unsigned short

leveldetect input unsigned short

magcard input signed short

magtrack1 input unsigned short

muxbus input unsigned short

3-38 Functions

neurowire master void

neurowire slave unsigned short

nibble input unsigned short

ontime input unsigned long

parallel void

period input unsigned long

pulsecount input unsigned long

quadrature input signed long

serial input unsigned short

 (count of the actual number of bytes
received)

totalcount input unsigned long

touch void

wiegand input unsigned short

For all input objects except those listed below, the syntax is io_in (input-obj);

The type of the return-value of the io_in() call is listed in the table above.

For bitshift input objects, the syntax is io_in (bitshift-input-obj [, numbits]);

numbits is the number of bits to be shifted in, from 1 to 127.
Only the last 16 bits shifted in will be returned. The
unused bits are 0 if fewer than 16 bits are shifted in.

For edgelog input objects, the syntax is io_in (edgelog-input-obj, buf, count);

buf is a pointer to a buffer of unsigned long values.

count is the maximum number of values to be read.

The io_in() call has an unsigned short return-value that is the actual
number of edges logged.

For i2c I/O objects, the syntax is io_in (i2c-io-obj, buf, addr, count);

buf is a (void *) pointer to a buffer.

addr is an unsigned short int I2C device address.

count is the number of bytes to be transferred.

The io_in() call has a boolean return-value that indicates whether the
transfer passed (TRUE) or failed (FALSE).

For infrared input objects, the syntax is io_in (infrared-input-obj, buf, ct, v1,
v2);

buf is a pointer to a buffer of unsigned short values.

ct is the maximum number of bits to be read.

v1 is the maximum period value (an unsigned long). See
the I/O object description later in this chapter for
more information.

Neuron C Reference Guide 3-39

v2 is the threshold value (an unsigned long). See the I/O
object description later in this chapter for more
information.

The io_in() call has an unsigned short return-value that is the actual
number of bits read.

For magcard input objects, the syntax is io_in (magcard-input-obj, buf);

buf is a pointer to a 20 byte buffer of unsigned short
bytes, which can contain up to 40 hex digits, packed 2
per byte.

The io_in() call has a signed short return-value that is the actual number
of hex digits read. A value of -1 is returned in case of error.

For magtrack1 input objects, the syntax is io_in (magtrack1-input-obj, buf);

buf is a pointer to a 78 byte buffer of unsigned short
bytes, which each contain a 6-bit character with parity
stripped.

The io_in() call has an unsigned short return-value that is the actual
number of characters read.

For muxbus I/O objects, the syntax is io_in (muxbus-io-obj [, addr]);

addr is an optional address to read. Omission of the
address will cause the firmware to reread the last
address read or written (muxbus is a bi-directional I/O
device).

For neurowire I/O objects, the syntax is io_in (neurowire-io-obj, buf, count);

buf is a (void *) pointer to a buffer.

count is the number of bits to be read.

The io_in() call has an unsigned short return-value signifying the number
of bits actually transferred for a neurowire slave object. For other I/O
object types, the return-value is void. See the Driving a Seven Segment
Display with the Neuron Chip engineering bulletin (part no. 005-0014-01) for
more information.

For parallel I/O objects, the syntax is io_in (parallel-io-obj, buf);

buf is a pointer to the parallel_io_interface structure.

For serial input objects, the syntax is io_in (serial-input-obj, buf, count);

buf is a (void *) pointer to a buffer.

count is the number of bytes to be read (from 1 to 255).

For touch I/O objects, the syntax is io_in (touch-io-obj, buf, count);

buf is a (void *) pointer to a buffer.

count is the number of bytes to be transferred.

For wiegand input objects, the syntax is io_in (wiegand-input-obj, buf,
count);

buf is an (unsigned *) pointer to a buffer.

count is the number of bits to be read (from 1 to 255).

3-40 Functions

EXAMPLE:

IO_0 input bit d0;
boolean value;
...
value = io_in(d0);

io_in_request() BUILT-IN FUNCTION
void io_in_request (input-io-object-name, control-value);

input-io-object-name Specifies the I/O object name, which corresponds to
io-object-name in the I/O declaration. This built-in
function is used only for dualslope I/O objects.

control-value An unsigned long value used to control the length of
the first integration period. See the description of the
dualslope I/O object for more information.

The io_in_request() built-in function is used with a dualslope I/O object.
The io_in_request() starts the dualslope A/D conversion process.

EXAMPLE:

IO_4 input dualslope ds;
stimer repeating t;

when (online)
{

t = 5; // Do a conversion every 5 sec
}

when (timer_expires(t))
{

io_in_request(ds, 40000);
}

Neuron C Reference Guide 3-41

io_out() BUILT-IN FUNCTION
void io_out (output-io-object-name, output-value [, args]);

output-io-object-name specifies the I/O object name, which corresponds to
io-object-name in the I/O declaration.

output-value specifies the value to be written to the I/O object.

args are arguments, which depend on the object type, as
described below. Some of these arguments can also
appear in the object declaration. If specified in both
places, the value of the function argument overrides
the declared value for that call only. If the value is
not specified in either the function argument or the
declaration, the default value is used.

The io_out() built-in function writes data to an I/O object.

The include file <io_types.h> contains optional type definitions for each of
the I/O object types. The type names are the I/O object type name followed by
“_t”. For example bit_t is the type name for a bit I/O object.

The data type of output-value is listed below for each object type.

Object Type Output Value Type

bit output unsigned short
bitshift output unsigned long (also, see below)
byte output unsigned short
edgedivide output unsigned long
frequency output unsigned long
i2c (see below)
muxbus output unsigned short
neurowire master (see below)
neurowire master void (also, see below)
neurowire slave (see below)
neurowire slave unsigned short (also, see below)
nibble output unsigned short
oneshot output unsigned long
parallel (see below)
pulsecount output unsigned long
pulsewidth output unsigned short
serial output (see below)
touch (see below)
triac output unsigned long
triggeredcount output unsigned long

3-42 Functions

For all output objects except those listed below, the syntax is io_out (output-
obj, output-value);

The type of the output-value of the io_out() call is listed in the table above.

For bitshift output objects, the syntax is io_out (bitshift-output-obj , output-
value [, numbits]);

numbits is the number of bits to be shifted out, from 1 to 127.
After 16 bits, zeros are shifted out.

For i2c I/O objects, the syntax is io_out (i2c-io-obj, buf, addr, count);

buf is a (void *) pointer to a buffer.

addr is an unsigned int I2C device address.

count is the number of bits to be written (from 1 to 255).

For muxbus I/O objects, the syntax is io_out (muxbus-io-obj, [addr,] data);

addr is an optional address to write. Omission of the
address will cause the firmware to rewrite the last
address read or written (muxbus is a bi-directional I/O
device).

For neurowire I/O objects, the syntax is io_out (neurowire-io-obj, buf, count);

buf is a (void *) pointer to a buffer.

count is the number of bits to be written (from 1 to 255).

Note that calling io_out() for a neurowire output object is the same as
calling io_in(). In either case, data is shifted into the buffer from pin IO_10.

For parallel I/O objects, the syntax is io_out (parallel-io-obj, buf);

buf is a pointer to the parallel_io_interface structure.

For serial output objects, the syntax is io_out (serial-output-obj, buf, count);

buf is a (void *) pointer to a buffer.

count is the number of bytes to be written (from 1 to 255).

For touch I/O objects, the syntax is io_out (touch-io-obj, buf, count);

buf is a (void *) pointer to a buffer.

count is the number of bits to be written (from 1 to 255).

EXAMPLE:

boolean value;
IO_0 output bit d0;

io_out(d0, value);

Neuron C Reference Guide 3-43

io_out_request() BUILT-IN FUNCTION
void io_out_request (io-object-name);

io-object-name specifies the I/O object name, which corresponds to
io-object-name in the parallel I/O declaration.

The io_out_request() built-in function sets up the system for an io_out()
on the specified parallel I/O object. When the system is ready, the
io_out_ready event becomes TRUE and the io_out() function can be used
to write data to the parallel port. See Chapter 2 of the Neuron C
Programmer's Guide for more information.

EXAMPLE:

when (...)
{

io_out_request(io_bus);
}

io_preserve_input() BUILT-IN FUNCTION
void io_preserve_input (input-io-object-name);

input-io-object-name Specifies the I/O object name which corresponds to
io-object-name in the I/O declaration. This built-in
function is only applicable to input timer/counter I/O
objects.

The io_preserve_input() built-in function is used with an input
timer/counter I/O object. If this function is not called, the Neuron firmware
will discard the first reading on a timer/counter object after a reset (or after a
device on the multiplexed timer/counter is selected using the io_select()
function), since the data may be suspect due to a partial update. Calling the
io_preserve_input() function prior to the first reading, either by an
io_in() or implicit input, will override the discard logic. The
io_preserve_input() call can be placed in a when (reset) clause to
preserve the first input value after reset. The call can be used immediately
after an io_select() call to preserve the first value after select.

EXAMPLE:

IO_5 input ontime ot1;
IO_6 input ontime ot2;
unsigned long variable1;

when (io_update_occurs(ot1))
{

variable1 = input_value;
io_select(ot2);
io_preserve_input(ot2);

}

3-44 Functions

io_select() BUILT-IN FUNCTION
void io_select (input-io-object-name [, clock-value]);

input-io-object-name specifies the I/O object name, which corresponds to
 io-object-name in the I/O declaration. This built-in
function is used only for the following timer/counter
input objects:

 infrared
 ontime
 period
 pulsecount
 totalcount

clock-value optionally specifies a clock, in the range 0 to 7, or a
variable name for the clock. This value permanently
overrides a clock value specified in the object’s
declaration. The clock value option can only be
specified for the infrared, ontime, and period
objects.

The io_select() built-in function selects which of the multiplexed pins is the
owner of the timer/counter circuit and optionally specifies a clock for the I/O
object. Input to one of the timer/counter circuits can be multiplexed among
pins 4 to 7. The other timer/counter input is dedicated to pin 4.

NOTE: io_select() automatically discards the first value obtained.

EXAMPLE:

IO_5 input ontime pcount1;
IO_6 input ontime pcount2;
unsigned long variable1;
when (io_update_occurs(pcount_1))
{

variable1 = input_value;
// select next I/O object
io_select(pcount_2);

}

Neuron C Reference Guide 3-45

io_set_clock() BUILT-IN FUNCTION
void io_set_clock (io-object-name, clock-value);

io-object-name specifies the I/O object name, which corresponds to
io-object-name in the I/O declaration. This built-in
function is used only for timer/counter I/O objects.

clock-value optionally specifies a clock, in the range 0 to 7, or a
variable name for the clock. This value overrides a
clock value specified in the object’s declaration.

The io_set_clock() built-in function allows an application to specify an
alternate clock value for any input or output timer/counter object which
permits a clock argument in its declaration syntax. The objects are:

 dualslope edgelog
 frequency
 infrared
 oneshot
 ontime
 period
 pulsecount
 pulsewidth
 triac

For multiplexed inputs, use the io_select() function to specify an alternate
clock.

Note: When io_set_clock() is used, the I/O object automatically discards
the first value obtained.

EXAMPLE:

IO_1 output pulsecount clock(3)pcout;

when(...)
{

io_set_clock(pcout, 5);
...

}

io_set_direction() BUILT-IN FUNCTION
typedef enum {IO_DIR_IN=0, IO_DIR_OUT=1} io_direction;

void io_set_direction (io-object-name, [io_direction dir]);

io-object-name specifies the I/O object name, which corresponds to
io-object-name in the I/O declaration. This built-in
function is used only for direct I/O objects such as bit,
nibble, and byte.

dir choose value from the io_direction enum shown
above. Optional, if omitted, uses the declared
direction of the I/O device to set the pin direction.

3-46 Functions

The io_set_direction() built-in function allows the application to change
the direction of any bit, nibble or byte type I/O pin at runtime. The dir
parameter is optional. If not provided, io_set_direction() sets the direction
based on the direction specified in the declaration of io_object_name.

A program can define multiple types of I/O objects for a single pin. When
directions conflict and a timer/counter object is defined, the direction of the
timer/counter object is used, regardless of the order of definition. However, if
the program uses the io_set_direction() function for such an object, the
direction will be changed as specified.

In order to change the direction of overlaid I/O objects, at least one of the
objects must be one of the allowed types for io_set_direction() and that I/O
object must be used to change directions, even if the subsequent I/O object
used is a different one.

For example, if you overlaid a bit input with a oneshot output, you only can
use the bit I/O object with io_set_direction() to change the direction from
input to output, thus enabling the oneshot output.

Any io_change events requested for input objects may trigger when the
object is redirected as an output. This is because the Neuron firmware
returns the last value output on an output object as the input value. Thus,
the user may wish to qualify io_change events with flags maintained by the
program indicating the current direction of the device.

EXAMPLE:

IO_0 output bit b0;
IO_0 input byte byte0;
int read_byte;

io_set_direction(b0, IO_DIR_OUT);
io_out(b0, 0);
io_set_direction(byte0); // Defaults to IO_DIR_IN
read_byte = io_in(byte0);

is_bound() BUILT-IN FUNCTION
boolean is_bound (net-object-name);

net-object-name is either a network variable name or a message tag.

The is_bound() built-in function indicates whether the specified network
variable or message tag is connected. The function returns TRUE if the
network variable or message tag is connected, otherwise it returns FALSE.
This function can be used to ensure that transactions are initiated only for
connected network variables and message tags.

When an unconnected network variable is updated or a message is sent out
on an unconnected message tag, success completion events are generated,
even though no actual network communication takes place. In this instance,
even if the unconnected message is a request and no response is received, the
message_succeeds and message_completes events will be TRUE.
Similarly, if a network variable poll is made on an unconnected network
variable, no network variable update will occur, although the
nv_update_succeeds event will be TRUE.

Neuron C Reference Guide 3-47

To avoid processing unconnected objects, the program can call is_bound()
first to ensure that the network variable or message tag is actually
connected. In most cases, a program can simply ignore the fact that network
variables and message tags are unconnected.

For network variables, is_bound() returns TRUE if the network variable
selector value is less than 0x3000. For message tags, is_bound() returns
TRUE if the message tag has a valid address in the address table.

EXAMPLE:

network input unsigned temp;
...
// Poll temp if it is bound
if (is_bound(temp)) {

poll(temp);
}

low_byte() BUILT-IN FUNCTION
unsigned short low_byte (unsigned long a);

The low_byte() built-in function extracts the lower single-byte value from
the double-byte operand a. This function operates without regard to
signedness. See also the description for the functions high_byte(),
make_long(), and swap_bytes().

EXAMPLE:

short b;
long a;

a = 258; // Hex value 0x0102
b = low_byte(a); // b now contains the value 0x02

make_long() BUILT-IN FUNCTION
unsigned long make_long (unsigned short low_byte, unsigned short
high_byte);

The make_long() built-in function combines the single-byte values low_byte
and high_byte to make a double-byte value. This function operates without
regard to signedness of the operands. See also the description for the
functions high_byte(), low_byte(), and swap_bytes().

EXAMPLE:

short a, b;
long l;

a = 16; // Hex value 0x10
b = -2; // Hex value 0xFE
l = make_long(a, b); // l now contains 0xFE10
l = make_long(b, a); // l now contains 0x10FE

3-48 Functions

max() BUILT-IN FUNCTION
type max (a, b);

The max() built-in function compares a and b and returns the larger value.
The result type is determined by the types of a and b, as shown below.

Larger Type Smaller Type Result

unsigned long (any) unsigned long

signed long signed long signed long
 unsigned short
 signed short

unsigned short unsigned short unsigned short
 signed short

signed short signed short signed short

If the result type is unsigned, the comparison is unsigned, else the
comparison is signed. Arguments can be cast, which affects the result type.
When argument types do not match, the smaller type argument is promoted
to the larger type prior to the operation.

EXAMPLE:

int a, b, c;
long x, y, z;

a = max(b, c);
x = max(y, z);

memccpy() FUNCTION
#include <mem.h>
int memccpy (void * dest, const void * src, int c, unsigned long len);

The memccpy() function copies len bytes from the memory area pointed to
by src to the memory area pointed to by dest, up to and including the first
occurrence of character c, if it exists. The routine returns a pointer to the
byte in dest immediately following c, if c was copied, else memccpy()
returns NULL. This function cannot be used to write to EEPROM or flash
memory. See also the descriptions for the ansi_memcpy(),
ansi_memset(), eeprom_memcpy(), memchr(), memcmp(),
memcpy(), and memset() functions.

EXAMPLE:

#include <mem.h>

unsigned array1[40], array2[40];
unsigned * p;

// Copy up to 40 bytes from array2 to array1,
// but stop if a 0xFF value is copied.
p = memccpy(array1, array2, 0xFF, 40);

Neuron C Reference Guide 3-49

memchr() FUNCTION
#include <mem.h>
void * memchr (const void * buf, int c, unsigned long len);

The memchr() function searches the first len bytes of the memory area
pointed to by buf for the first occurrence of character c, if it exists. The
routine returns a pointer to the byte in buf containing c, else memchr()
returns NULL. See also the descriptions for the ansi_memcpy(),
ansi_memset(), eeprom_memcpy(), memccpy(), memcmp(),
memcpy(), and memset() functions.

EXAMPLE:

#include <mem.h>

unsigned array[40];
unsigned * p;

// Find the first 0xFF byte, if it exists
p = memchr(array, 0xFF, 40);

memcmp() FUNCTION
#include <mem.h>
int memcmp (void * buf1, const void * buf2, unsigned long len);

The memcmp() function compares the first len bytes of the memory area
pointed to by buf1 to the memory area pointed to by buf2. The routine
returns 0 if the memory areas match exactly. Otherwise, on the first non-
matching byte, the byte from each buffer is compared using an unsigned
comparison. If the byte from buf1 is larger, then a positive number is
returned, else a negative number is returned. This fuction cannot be used to
write to EEPROM or flash memory. See also the descriptions for the
ansi_memcpy(), ansi_memset(), eeprom_memcpy(), memccpy(),
memchr(), memcpy(), and memset() functions.

EXAMPLE:

#include <mem.h>

unsigned array1[40], array2[40];

// See if array1 matches array2
if (memcmp(array1, array2, 40) != 0) {

// The contents of the two areas does not match
}

3-50 Functions

memcpy() BUILT-IN FUNCTION
void memcpy (void *dest, void *src, unsigned long len);

The memcpy() built-in function copies a block of len bytes from src to dest.
It does not return any value. This function cannot be used to copy
overlapping areas of memory, or to write into EEPROM or flash memory.
The memcpy() function can also be used to copy to and from the data fields
of the msg_in, resp_in, msg_out, and resp_out objects.

The memcpy() function as implemented here does not conform to the ANSI
definition, as it does not return a pointer to the destination array. See the
function ansi_memcpy() for a conforming implementation. See also the
descriptions for the ansi_memset(), eeprom_memcpy(), memccpy(),
memchr(), memcmp(), and memset() functions.

EXAMPLE:

memcpy(msg_out.data, "Hello World", 11);

memset() BUILT-IN FUNCTION
void memset (void *p, int c, unsigned long len);

The memset() built-in function sets the first len bytes of the block pointed to
by p to the character c. It does not return any value. This function cannot be
used to write into EEPROM or flash memory.

The memset() function as implemented here does not conform to the ANSI
definition, as it does not return a pointer to the array. See the alternate
function ansi_memset() for a conforming implementation. See also the
descriptions for the ansi_memcpy(), eeprom_memcpy(), memccpy(),
memchr(), memcmp(), and memcpy() functions.

EXAMPLE:

unsigned target[20];
memset(target, 0, 20);

Neuron C Reference Guide 3-51

min() BUILT-IN FUNCTION
type min (a, b);

The min() built-in function compares a and b and returns the smaller value.
The result type is determined by the types of a and b, as shown above for
max().

EXAMPLE:

int a, b, c;
long x, y, z;

a = min(b, c);
x = min(y, z);

msg_alloc() BUILT-IN FUNCTION
boolean msg_alloc (void);

The msg_alloc() built-in function allocates a nonpriority buffer for an
outgoing message. The function returns TRUE if a msg_out object can be
allocated. The function returns FALSE if a msg_out object cannot be
allocated. When this function returns FALSE, a program can continue with
other processing, if necessary, rather than waiting for a free message buffer.

EXAMPLE:

if (msg_alloc()) {
// OK. Build and send message
...

}

msg_alloc_priority() BUILT-IN FUNCTION
boolean msg_alloc_priority (void);

The msg_alloc_priority() built-in function allocates a priority buffer for an
outgoing message. The function returns TRUE if a priority msg_out object
can be allocated. The function returns FALSE if a priority msg_out object
cannot be allocated. When this function returns FALSE, a program can
continue with other processing, if desired, rather than waiting for a free
priority buffer.

EXAMPLE:

if (msg_alloc_priority()) {
// OK. Build and send message
...

}

3-52 Functions

msg_cancel() BUILT-IN FUNCTION
void msg_cancel (void);

The msg_cancel() built-in function cancels the message currently being
built and frees the associated buffer, allowing another message to be
constructed.

If a message is constructed but not sent before the critical section (for
example, a task) is exited, the message is automatically cancelled. This
function is used to cancel both priority and nonpriority messages.

EXAMPLE:

if (msg_alloc()) {
...

if (offline()) {
// Requested to go offline

msg_cancel();
} else {

msg_send();
}

}

msg_free() BUILT-IN FUNCTION
void msg_free (void);

The msg_free() built-in function frees the msg_in object for an incoming
message.

EXAMPLE:

...
if (msg_receive()) {

// Process message
...

msg_free();
}

...

msg_receive() BUILT-IN FUNCTION
boolean msg_receive (void);

The msg_receive() built-in function receives a message into the msg_in
object. The function returns TRUE if a new message is received, otherwise it
returns FALSE. If no message is pending at the head of the message queue,
this function does not wait for one. A program may need to use this function
if it receives more than one message in a single task, as in bypass mode. If
there already is a “received” message, the earlier one is discarded (that is, its
buffer space is freed).

Neuron C Reference Guide 3-53

NOTE: Because this function defines a critical section boundary, it should
never be used in a when clause expression (i.e. it can be used in a task, but
not within the when clause itself). Using it in a when clause expression
could result in events being processed incorrectly.

The msg_receive() function receives all messages in raw form, such that
the special events online, offline, and wink cannot be used. If the program
handles any of these, it should use the msg_arrives event, rather than the
msg_receive() function.

EXAMPLE:

...
if (msg_receive()){

// Process message
...

msg_free();
}

...

msg_send() BUILT-IN FUNCTION
void msg_send (void);

The msg_send() built-in function sends a message using the msg_out
object.

EXAMPLE:

msg_tag motor;
define MOTOR_ON 0
define ON_FULL 1

when (io_changes(switch1)to ON)
{

// Send a message to the motor
msg_out.tag = motor;
msg_out.code = MOTOR_ON;
msg_out.data[0] = ON_FULL;
msg_send();

}

muldiv() FUNCTION
#include <stdlib.h>
unsigned long muldiv (unsigned long A, unsigned long B, unsigned long C);

The muldiv() function permits the computation of (A*B)/C where A, B, and
C are all 16-bit values, but the intermediate product of (A*B) is a 32-bit
value. Thus, the accuracy of the result is improved. There are two versions
of this function: muldiv() and muldivs(). The muldiv() function uses
unsigned arithmetic, while the muldivs() function (see below) uses signed
arithmetic.

3-54 Functions

See also the functions muldiv24() and muldiv24s() for functions which use
24-bit intermediate accuracy for faster performance.

EXAMPLE:

#include <stdlib.h>
unsigned long a, b, c, d;
...
d = muldiv(a, b, c); // d = (a*b)/c

muldiv24() FUNCTION
#include <stdlib.h>
unsigned long muldiv24 (unsigned long A, unsigned int B, unsigned int C);

The muldiv24() function permits the computation of (A*B)/C where A is a
16-bit value, and B and C are both 8-bit values, but the intermediate product
of (A*B) is a 24-bit value. Thus, the accuracy of the result is improved.
There are two versions of this function: muldiv24() and muldiv24s(). The
muldiv24() function uses unsigned arithmetic, while the muldiv24s()
function (see below) uses signed arithmetic.

See also the functions muldiv() and muldivs() for functions which use 32-
bit intermediate accuracy.

EXAMPLE:

#include <stdlib.h>
unsigned long a, d;
unsigned int b, c;
...
d = muldiv24(a, b, c); // d = (a*b)/c

muldiv24s() FUNCTION
#include <stdlib.h>
signed long muldiv24s (signed long A, signed int B, signed int C);

The muldiv24s() function permits the computation of (A*B)/C where A is a
16-bit value, and B and C are both 8-bit values, but the intermediate product
of (A*B) is a 24-bit value. Thus, the accuracy of the result is improved.
There are two versions of this function: muldiv24s() and muldiv24(). The
muldiv24s() function uses signed arithmetic, while the muldiv24()
function (see above) uses unsigned arithmetic.

See also the functions muldiv() and muldivs() for functions which use 32-
bit intermediate accuracy.

EXAMPLE:

#include <stdlib.h>
signed long a, d;
signed int b, c;
...
d = muldiv24s(a, b, c); // d = (a*b)/c

Neuron C Reference Guide 3-55

muldivs() FUNCTION
#include <stdlib.h>
signed long muldivs (signed long A, signed long B, signed long C);

The muldivs() function permits the computation of (A*B)/C where A, B, and
C are all 16-bit values, but the intermediate product of (A*B) is a 32-bit
value. Thus, the accuracy of the result is improved. There are two versions
of this function: muldivs() and muldiv(). The muldivs() function uses
signed arithmetic, while the muldiv() function (see above) uses unsigned
arithmetic.

See also the functions muldiv24() and muldiv24s() for functions which use
24-bit intermediate accuracy.

EXAMPLE:

#include <stdlib.h>
signed long a, b, c, d;
...
d = muldiv(a, b, c); // d = (a*b)/c

node_reset() FUNCTION
#include <control.h>
void node_reset (void);

The node_reset() function resets the Neuron Chip or Smart Transceiver
hardware. When node_reset() is called, all the device’s volatile state
information is lost. Variables declared with the eeprom or config class and
the device’s network image (which is stored in EEPROM) are preserved
across resets and loss of power. The when(reset) event evaluates to TRUE
after this function is called.

EXAMPLE:

#define MAX_ERRORS1 50
#define MAX_ERRORS2 55
int error_count;
...

when(error_count > MAX_ERRORS2)
{

node_reset();
}

when(error_count > MAX_ERRORS1)
{

application_restart();
}

3-56 Functions

nv_table_index() BUILT-IN FUNCTION
int nv_table_index (netvar-name);

netvar-name is a network variable name, possibly including an
index expression

The nv_table_index() built-in function is used to determine the index of a
network variable as allocated by the Neuron C compiler. The returned value
is in the range 0 to 61.

EXAMPLE:

int nv_index;
network output int my_nv;

nv_index = nv_table_index(my_nv);

offline_confirm() FUNCTION
#include <control.h>
void offline_confirm (void);

The offline_confirm() function allows a device to confirm to a network tool
that the device has finished its clean-up and is now going offline. This
function is normally only used in bypass mode (that is, when the offline
event is checked for outside of a when clause). If the program is not in bypass
mode, use when (offline) rather than offline_confirm().

In bypass mode, when the Neuron firmware goes offline using
offline_confirm(), the program continues to run. It is up to the
programmer to determine which events are processed when the Neuron
firmware is offline.

EXAMPLE:

...
if (offline){

// Perform offline cleanup
...

offline_confirm();
}

poll() BUILT-IN FUNCTION
void poll ([network-var]);

network-var is a network variable identifier, array name, or array
element. If the parameter is omitted, all input
network variables for the device are polled.

The poll() built-in function allows a device to request the latest value for one
or more of its input network variables. Any input network variable can be
polled at any time. If an array name is used, then each element of the array
will be polled. An individual element may be polled with use of an array

Neuron C Reference Guide 3-57

index. When an event expression qualified by an unindexed network variable
array name is TRUE, the nv_array_index built-in variable (type short int)
may be examined to obtain the element's index to which the event applies.
Note that the network variable does not need to be declared as polled.

The new, polled value can be obtained through use of the nv_update_occurs
event

If multiple devices have output network variables connected to the input
network variables being polled, multiple updates will be sent in response to
the poll. The polling device cannot assume that all updates will be received
and processed independently. This means it is possible for multiple updates
to occur before the polling device can process the incoming values. To ensure
that all values sent are independently processed, the polling device should
declare the input network variable as a synchronous input.

It should be noted that the network management tool must use a different
network variable binding algorithm if an input network variable that uses
poll() is a member of a desired network variable connection. This may
result in an undesired consumption of address table entries on the device
that contains the polling input network variable(s). Therefore, the use of the
poll() function should be considered with great care.

The poll() function is often used to obtain the initial values after the node
returns to an online state. See the LONMARK Application Layer
Interoperability Guidelines for an alternative approach, using heartbeat
timers.

EXAMPLE:

network input unsigned temp;
...
// Poll temp if it is bound/
if (is_bound(temp)) {

poll(temp);
}
...
when (nv_update_occurs(temp))
{

// New value of temp arrived
}

3-58 Functions

post_events() FUNCTION
#include <control.h>
void post_events (void);

The post_events() function defines a boundary of a critical section at which
network variable updates and messages are sent and incoming network
variable update and message events are posted.

The post_events() function is called implicitly by the scheduler at the end of
every task body. If the application program calls post_events() explicitly,
the application should be prepared to handle the special messages online,
offline, and wink before checking for any msg_arrives event.

The post_events() function can also be used to improve network
performance. See the post_events() Function section in Chapter 5 of the
Neuron C Programmer's Guide for a more detailed discussion of this feature.

EXAMPLE:

boolean still_processing;
...
while (still_processing) {

post_events();
...
}

power_up() FUNCTION
#include <status.h>
boolean power_up (void);

The power_up() function returns TRUE if the last reset resulted from a
power up. Any time an application starts up (whether from a reset or from a
power up), the when(reset) clause becomes TRUE. This function can be
used by the application to determine whether the start-up resulted from a
power up or not.

EXAMPLE:

when (reset)
{

if (power_up())
initialize_hardware();

else {
// hardware already initialized
...

}
}

Neuron C Reference Guide 3-59

preemption_mode() FUNCTION
boolean preemption_mode (a);

The preemption_mode() function returns a TRUE if the application is
currently running in preemption mode, or FALSE if the application is not in
preemption mode. Preemption mode is discussed in Chapter 3 of the
Neuron C Programmer's Guide.

EXAMPLE:

if (preemption_mode()) {
// Take some appropriate action
...

}

propagate() BUILT-IN FUNCTION
void propagate ([network-var]);

network-var is a network variable identifier, array name, or array
element. If the parameter is omitted, all output
network variables for the device are propagated.

The propagate() built-in function allows a device's application program to
request that the latest value for one or more of its output network variables
be sent out over the network. Any output network variable can be
propagated at any time. If an array name is used, then each element of the
array will be propagated. An individual element may be propagated with use
of an array index.

Input network variables cannot be propagated, and calls to propagate() for
input network variables have no effect.

This function allows variables to be sent out even if they are declared const,
and are thus in read-only memory (normally a network variable's value is
sent over the network only when it is stored to). Also, it permits updating a
network variable via a pointer, and then causing the variable to be
propagated separately.

3-60 Functions

Polled output network variables can be propogated with the propagate()
function. However, if an output network variable is declared as polled, but
is also affected by the propagate() function, the polled attribute does not
appear in the device's device interface file (.XIF file). Thus, network tools can
handle the network address assignment for the variable properly. If any
member of an array is propagated, the polled attribute is blocked for all
elements of the array. If a propagate() call appears without arguments, all
output variables' polled attributes are blocked.

EXAMPLE 1:

network output const eeprom unsigned idvalue = 5;

// Propagate idvalue on request
when (...)
{

propagate(idvalue);
}

EXAMPLE 2:

// The pragma permits network variable addresses
// to be passed to functions with non-const pointers,
// with only a warning.
#pragma relaxed_casting_on

typedef struct { ... } struct_type;

network output struct_type var;

void f(struct_type * p);

when (...)
{

f(&var); // Process var by address in function f
propagate(var); // Cause NV to be sent out

}

random() FUNCTION
unsigned int random (void);

The random() function returns a random number in the range 0 ... 255.
The random number is seeded using the unique 48-bit Neuron ID.

EXAMPLE:

unsigned value;
...
value = random();

Neuron C Reference Guide 3-61

refresh_memory() FUNCTION
#include <control.h>
void refresh_memory (const void * address, unsigned count);

The refresh_memory() function refreshes count bytes starting at address
in a device's EEPROM memory. Refreshing consists of reading every byte of
EEPROM, except the Neuron ID, and writing it back. Calling this function
periodically (but infrequently, such as once per year per location) can
increase the life of the EEPROM. It can also be used to refresh off-chip
EEPROM (for a Neuron 3150 Chip or FT 3150 Smart Transceiver).

The count parameter should be as small as possible to avoid locking out
network processing for too long a period. Each byte refreshed in a single call
uses 20 milliseconds (for nominal EEPROM write times). Under no
circumstances should the count exceed 32.

EXAMPLE:

#include <control.h>

refresh_memory(0xf008, 2); // Refreshes two bytes

resp_alloc() BUILT-IN FUNCTION
boolean resp_alloc (void);

The resp_alloc() built-in function allocates an object for an outgoing
response. The function returns TRUE if a resp_out object can be allocated.
The function returns FALSE if a resp_out object cannot be allocated.

EXAMPLE:

if (resp_alloc()) {
// OK. Build and send message
...

}

3-62 Functions

resp_cancel() BUILT-IN FUNCTION
void resp_cancel (void);

The resp_cancel() built-in function cancels the response being built and
frees the associated resp_out object, allowing another response to be
constructed.

If a response is constructed but not sent before the critical section (for
example, a task) is exited, the response is automatically cancelled. See
Chapter 6 of the Neuron C Programmer's Guide for more detailed
information.

EXAMPLE:

if (resp_alloc()) {
...

if (offline()) {
// Requested to go offline
resp_cancel();

} else {
resp_send();

}
}

resp_free() BUILT-IN FUNCTION
void resp_free (void);

The resp_free() built-in function frees the resp_in object for a response.
See Chapter 6 of the Neuron C Programmer's Guide.

EXAMPLE:

...
if (resp_receive()) {

// Process message
...
resp_free();

}
...

resp_receive() BUILT-IN FUNCTION
boolean resp_receive (void);

The resp_receive() built-in function receives a response into the resp_in
object. The function returns TRUE if a new response is received, otherwise it
returns FALSE. If no response is received, this function does not wait for
one. A program may need to use this function if it receives more than one
response in a single task, as in bypass mode. If there already is a “received”
response when the resp_receive() function is called, the earlier one is
discarded (that is, its buffer space is freed). Important note: because this
function defines a critical section boundary, it should never be used in a
when clause (but it can be used within a task). Using it in a when clause

Neuron C Reference Guide 3-63

could result in events being processed incorrectly. See Chapter 6 of the
Neuron C Programmer's Guide for more detailed information.

EXAMPLE:

...
if (resp_receive()) {

// Process message
...

resp_free();
}

...

resp_send() BUILT-IN FUNCTION
void resp_send (void);

The resp_send() built-in function sends a response using the resp_out
object. See Chapter 6 of the Neuron C Programmer's Guide for more detailed
information.

EXAMPLE:

define DATA_REQUEST 0
define OK 1

when (msg_arrives(DATA_REQUEST)))
{

int x, y;
x = msg_in.data(0);
y = get_response(x);
resp_out.code = OK;

// msg_in no longer available
resp_out.data[0] = y;
resp_send();

}

3-64 Functions

retrieve_status() FUNCTION
#include <status.h>
void retrieve_status (status_struct * p);

typedef struct status_struct {

unsigned long status_xmit_errors;
unsigned long status_transaction_timeouts;
unsigned long status_rcv_transaction_full;
unsigned long status_lost_msgs;
unsigned long status_missed_msgs;
unsigned status_reset_cause;
unsigned status_node_state;
unsigned status_version_number
unsigned status_error_log;
unsigned status_model_number;

} status_struct;

status_xmit_errors is a count of the transmission errors that have been
detected on the network. A transmission error is
detected through a CRC error during packet reception.
This error could result from a collision, noisy medium,
or excess signal attenuation.

status_transaction_timeouts
is a count of the timeouts that have occurred in
attempting to carry out acknowledged or
request/response transactions initiated by the device.

status_rcv_transaction_full
is the number of times an incoming repeated,
acknowledged, or request message was lost because
there was no more room in the receive transaction
database. The size of this database can be set through
a pragma at compile time (#pragma
receive_trans_count).

status_lost_msgs is the number of messages that were addressed to the
device and received in a network buffer that were
thrown away because there was no application buffer
available for the message. The number of application
buffers can be set through a pragma at compile time
(#pragma app_buf_in_count).

status_missed_msgs is the number of messages that were on the network
but could not be received because there was no
network buffer available for the message. The
number of network buffers can be set through a
pragma at compile time (#pragma
net_buf_in_count).

status_reset_cause is information identifying the source of the most
recent reset. The values for this byte are as follows (x
= don’t care):

Neuron C Reference Guide 3-65

 powerup reset 0bxxxxxxx1
external reset 0bxxxxxx10
watchdog timer reset 0bxxxx1100
software-initiated reset 0bxxx10100

status_node_state is the state of the device. The states are as
follows:

 No application 0x01
Unconfigured 0x02
Unconfigured/no application 0x03
Configured/online 0x04
Configured/no application 0x06
Configured/offline 0x0C

status_version_number
is the version number, which reflects the Neuron
firmware version.

status_error_log is the most recent error logged by the Neuron
firmware or application. A value of 0 indicates no
error. An error in the range of 1 to 127 is an
application error and is unique to the application. An
error in the range of 128 to 255 is a system error
(system errors are documented in the NodeBuilder
Errors Guide). The system errors are also available in
the include file <nm_err.h>.

status_model_number
is the model number of the Neuron Chip or Smart
Transceiver. The value for this byte is:

 0x00 for Neuron 3150 Chip
0x08 for Neuron 3120 Chip
0x09 for Neuron 3120E1 Chip
0x0A for Neuron 3120E2 Chip
0x0B for Neuron 3120E3 Chip
0x0C for Neuron 3120A20 Chip
0x0D for Neuron 3120E5 Chip
0x0E for Neuron 3120E4 Chip

The retrieve_status() function returns diagnostic status information to the
Neuron C application. This information is also available to a network tool
over the network, through the query network diagnostics message. The
status_struct structure, defined in <status.h>, is shown above.

For an example of this function, see Chapter 7 of the Neuron C Programmer's
Guide.

3-66 Functions

reverse() BUILT-IN FUNCTION
unsigned int reverse (unsigned int a);

The reverse() built-in function reverses the bits in a.

EXAMPLE:

int value;
...
value = 0xE3;
...
value = reverse(value);
// now value is 0xC7

rotate_long_left() FUNCTION
#include <byte.h>
long rotate_long_left (long arg, unsigned count);

The rotate_long_left() function returns the bit-rotated value of arg. The
bit positions are rotated the number of places determined by the count
argument. The signedness of the argument does not affect the result. Bits
which are rotated out from the upper end of the value are rotated back in at
the lower end. See also the rotate_long_right(), rotate_short_left(), and
rotate_short_right() functions.

EXAMPLE:

#include <byte.h>
long k;

k = 0x3F00;
k = rotate_long_left(k, 3); // k now contains 0xF801

rotate_long_right() FUNCTION
#include <byte.h>
long rotate_long_right (long arg, unsigned count);

The rotate_long_right() function returns the bit-rotated value of arg. The
bit positions are rotated the number of places determined by the count
argument. The signedness of the argument does not affect the result. Bits
which are rotated out from the lower end of the value are rotated back in at
the upper end. See also the rotate_long_left(), rotate_short_left(), and
rotate_short_right() functions.

EXAMPLE:

#include <byte.h>
long k;

k = 0x3F04;
k = rotate_long_right(k, 3); // k now contains 0x87E0

Neuron C Reference Guide 3-67

rotate_short_left() FUNCTION
#include <byte.h>
short rotate_short_left (short arg, unsigned count);

The rotate_short_left() function returns the bit-rotated value of arg. The
bit positions are rotated the number of places determined by the count
argument. The signedness of the argument does not affect the result. Bits
which are rotated out from the upper end of the value are rotated back in at
the lower end. See also the rotate_long_left(), rotate_long_right(), and
rotate_short_right() functions.

EXAMPLE:

#include <byte.h>
short s;

s = 0x3F;
s = rotate_short_left(s, 3); // s now contains 0xF9

rotate_short_right() FUNCTION
#include <byte.h>
short rotate_short_right (short arg, unsigned count);

The rotate_short_right() function returns the bit-rotated value of arg. The
bit positions are rotated the number of places determined by the count
argument. The signedness of the argument does not affect the result. Bits
which are rotated out from the lower end of the value are rotated back in at
the upper end. See also the rotate_long_left(), rotate_long_right(), and
rotate_short_left() functions.

EXAMPLE:

#include <byte.h>
short s;

s = 0x3F;
s = rotate_short_right(s, 3); // l now contains 0xE7

scaled_delay() BUILT-IN FUNCTION
void scaled_delay (unsigned long count);

count is a value between 1 and 33333. The formula for
determining the duration of the delay is based on
count and the Neuron input clock (see below).

3-68 Functions

The scaled_delay() built-in function generates a delay that scales with the
Neuron input clock.

In the formula shown below, S is the input clock:

 0.25 = 40 MHz input clock
0.5 = 20 MHz input clock
1 = 10 MHz input clock
2 = 5 MHz input clock
4 = 2.5 MHz input clock
8 = 1.25 MHz input clock
16 = 625kHz input clock

The formula for determining the duration of the delay is

 delay = (25.2 * count + 7.2) *S microseconds

(See also the delay() function, which generates a delay which is not scaled
and is only minimally dependent on the Neuron input clock.)

EXAMPLE:

IO_2 output bit software_one_shot;

io_out(software_one_shot, 1);
//turn it on

scaled_delay(4);
//approx. 108 µsec at 10MHz

io_out(software_one_shot, 0);
//turn it off

service_pin_msg_send() FUNCTION
#include <control.h>
int service_pin_msg_send (void);

The service_pin_msg_send() function attempts to send a service pin
message. It returns non-zero if it is successful (queued for transmission in
the network processor) and zero if not. This is useful for automatic
installation scenarios. For example, a device can automatically transfer its
service pin message a random amount of time after powering up.

EXAMPLE:

#include <control.h>

when (...)
{

int tries;

...

for (tries = 3; tries > 0; --tries) {
if (service_pin_msg_send()) break;

}
}

Neuron C Reference Guide 3-69

service_pin_state() FUNCTION
#include <control.h>
int service_pin_state (void);

The service_pin_state() function allows an application program to read the
service pin. A state of 0 or 1 is returned. A value of 1 indicates the service
pin is at logic zero. This is useful for improving ease of installation and
maintenance. For example, an application can check for the service pin being
held low for three seconds following a reset and go unconfigured (for ease of
re-installation).Example:

#include <control.h>

stimer three_sec_timer;

when (reset)
{

if (service_pin_state()) three_sec_timer = 3;
}

when (timer_expires(three_sec_timer))
{

if (service_pin_state()) {
// Service pin still depressed
// go to unconfigured state
go_unconfigured();

}
}

set_bit() FUNCTION
#include <byte.h>
void set_bit (void * array, unsigned bitnum);

The set_bit() function sets a bit in a bit array pointed to by array. Bits are
numbered from left to right in each byte, so that the first bit in the array is
the most significant bit of the first byte in the array. Like all arrays in C,
this first element corresponds to index 0 (bitnum 0). See also the clr_bit()
function and the set_bit() function.

EXAMPLE:

#include <byte.h>

unsigned short a[4];

memset(a, 0, 4); // Clears all bits at once
set_bit(a, 4); // Sets a[0] to 0x08 (5th bit)

3-70 Functions

set_eeprom_lock() FUNCTION
#include <control.h>
void set_eeprom_lock (boolean lock);

The set_eeprom_lock() function allows the application to control the state
of the EEPROM lock. This feature is only available in Version 6 and later of
the Neuron 3150 Chip and FT 3150 Smart Transceiver firmware, and
Version 4 and later of the Neuron 3120xx Chip or FT 3120 Smart Transceiver
firmware. The function enables or disables the lock (with a TRUE or FALSE
argument, respectively). The EEPROM lock feature reduces the chances that
a hardware failure or application anomaly will lead to a corruption of
checksummed onchip EEPROM or offchip EEPROM or flash memory. The
lock is automatically suspended while a device is offline to allow network
management operations to occur. The application must release the lock prior
to performing self-configuration. Application EEPROM variables are not
locked. For more information, including a discussion of the drawbacks to use
of this feature, see #pragma eeprom_locked in the Compiler Directives
chapter of this Reference Guide.

EXAMPLE:

#include <control.h>

when (reset)
{

// Lock the EEPROM to prevent accidental writes
set_eeprom_lock(TRUE);

}

...
// Unlock EEPROM for update

set_eeprom_lock(FALSE);
...//Update EEPROM
//Relock EEPROM
set_eeprom_lock (TRUE)
...

Signed 32-bit Arithmetic Support FUNCTIONS
void s32_abs (const s32_type * arg1, s32_type * arg2);

void s32_add (const s32_type * arg1, const s32_type * arg2, s32_type * arg3);

int s32_cmp (const s32_type * arg1, const s32_type * arg2);

void s32_dec (s32_type * arg1);

void s32_div (const s32_type * arg1, const s32_type * arg2, s32_type * arg3);

void s32_div2 (s32_type * arg1);

void s32_eq (const s32_type * arg1, const s32_type * arg2);

void s32_from_ascii (const char * arg1, s32_type * arg2);

void s32_from_slong (signed long arg1, s32_type * arg2);

void s32_from_ulong (unsigned long arg1, s32_type * arg2);

Neuron C Reference Guide 3-71

void s32_ge (const s32_type * arg1, const s32_type * arg2);

void s32_gt (const s32_type * arg1, const s32_type * arg2);

void s32_inc (s32_type * arg1);

void s32_le (const s32_type * arg1, const s32_type * arg2);

void s32_lt (const s32_type * arg1, const s32_type * arg2);

void s32_max (const s32_type * arg1, const s32_type * arg2, s32_type *
arg3);

void s32_min (const s32_type * arg1, const s32_type * arg2, s32_type * arg3);

void s32_mul (const s32_type * arg1, const s32_type * arg2, s32_type * arg3);

void s32_mul2 (s32_type * arg1);

void s32_ne (const s32_type * arg1, const s32_type * arg2);

void s32_neg (const s32_type * arg1, s32_type * arg2);

void s32_rand (s32_type * arg1);

void s32_rem (const s32_type * arg1, const s32_type * arg2, s32_type * arg3);

int s32_sign (const s32_type * arg1);

void s32_sub (const s32_type * arg1, const s32_type * arg2, s32_type * arg3);

void s32_to_ascii (const s32_type * arg1, char * arg2);

signed long s32_to_slong (const 32_type * arg1);

unsigned long s32_to_ulong (const 32_type * arg1);

The signed 32-bit arithmetic support functions are part of the extended
arithmetic library. See Signed 32-bit Integer Support Functions, prior to this
function directory, for a detailed explanation of the extended arithmetic
support functions which are available.

sleep() BUILT-IN FUNCTION
void sleep (unsigned int flags);

void sleep (unsigned int flags , io-object-name);

void sleep (unsigned int flags , io-pin);

flags is one or more of the following three flags, or 0 if no
flag is specified:

COMM_IGNORE causes incoming messages to be ignored

PULLUPS_ON enables all I/O pullup resistors (the service pin pullup
is not affected)

TIMERS_OFF turns off all timers in the program

If two or more flags are used, they must be combined using either the + or the
| operator.

io-object-name specifies an input object for any of pins IO_4 through
IO_7. When any I/O transition occurs on this pin, the
Neuron Chip wakes up. If this parameter and the io-
pin argument is not specified, I/O is ignored after the
Neuron Chip goes to sleep.

io-pin specifies one of pins IO_4 through IO_7 directly
instead of via a declared I/O object.

3-72 Functions

The sleep() built-in function puts the Neuron Chip or Smart Transceiver in
a low-power state. The processors are halted, and the internal oscillator is
turned off. Any of the three syntactical forms shown above may be used. The
second form uses a declared I/O object's pin as a wakeup pin. The third form
directly specifies a pin to be used for a wakeup event.

The Neuron Chip or Smart Transceiver wakes up when any of the following
conditions occurs:

 • A message arrives (unless the COMM_IGNORE flag is set)
• The service pin is pressed
• The specified input object transition occurs (if one is specified)

(See also Chapter 7 of the Neuron C Programmer's Guide.)

EXAMPLE:

IO_6 input bit wakeup;
...
when (flush_completes)
{

sleep(COMM_IGNORE + TIMERS_OFF, wakeup);
}

strcat() FUNCTION
#include <string.h>
char * strcat (char * dest, const char * src);

The strcat() function appends a copy of the string src to the end of the string
dest, resulting in concatenated strings (thus the name strcat, from string
concatenate). The function returns a pointer to the string dest. See also the
functions strchr(), strcmp(), strcpy(), strlen(), strncat(), strncmp(),
strncpy(), and strrchr().

This routine cannot be used to copy overlapping areas of memory, or to write
into EEPROM memory or network variables.

EXAMPLE:

#include <string.h>

void f (void)
{

char buf[40]

strcpy(buf, "Hello");
strcat(buf, " World"); // buf contains "Hello World"

...
}

Neuron C Reference Guide 3-73

strchr() FUNCTION
#include <string.h>
char * strchr (const char * s, char c);

The strchr() function searches the string s for the first occurrence of the
char c. If the string does not contain c, the strchr() function returns the
null pointer. The NUL character terminator '\0' is considered to be part of
the string, thus strchr(s,'\0') returns a pointer to the NUL terminator. See
also the strcat(), strcmp(), strcpy(), strlen(), strncat(), strncmp(),
strncpy(), and strrchr() functions.

EXAMPLE:

#include <string.h>

void f (void)
{

char buf[20];
char * p;

strcpy(buf, "Hello World");
p = strchr(buf, 'o'); // Assigns &(buf[4]) to p
p = strchr(buf, '\0'); // Assigns &(buf[11]) to p
p = strchr(buf, 'x'); // Assigns NULL to p

}

strcmp() FUNCTION
#include <string.h>
int strcmp (const unsigned char * s1, const unsigned char * s2);

The strcmp() function compares the contents of string s1 and s2, up until
the NUL terminator character in the shorter string. The function performs a
case-sensitive comparison. If the strings match identically, 0 is returned.
When a mismatch occurs, the characters from both strings at the mismatch
are compared. If the first string's character is greater, using an unsigned
comparison, the return value is positive. If the second string's character is
greater, the return value is negative.

3-74 Functions

Note that the terminating NUL (Ø) character is compared just as any other
character. See also the strcat(), strchr(), strcpy(), strlen(), strncat(),
strncmp(), strncpy(), and strrchr() functions.

EXAMPLE:

#include <string.h>

void f (void)
{

int val;
char s1[20], s2[20];

val = strcmp(s1, s2);
if (!val) {

// Strings are equal
} else if (val < 0) {

// String s1 is less than s2
} else {

// String s1 is greater than s2
}

}

strcpy() FUNCTION
#include <string.h>
char * strcpy (char * dest, const char * src);

The strcpy() function copies the string pointed to by the parameter src into
the string buffer pointed to by the parameter dest. The copy ends implicitly,
when the terminating NUL (Ø) character is copied—no string length
information is available to the routine. There is no attempt to insure that the
string will actually fit in the available memory. That task is left up to the
programmer. See also the strcat(), strchr(), strcmp(), strlen(),
strncat(), strncmp(), strncpy(), and strrchr() functions.

This routine cannot be used to copy overlapping areas of memory, or to write
into EEPROM memory or network variables.

EXAMPLE:

#include <string.h>

void f (void)
{

char s1[20], s2[20];

strcpy(s1, "Hello World");
strcpy(s2, s1);

}

Neuron C Reference Guide 3-75

strlen() FUNCTION
#include <string.h>
unsigned long strlen (const char * s);

The strlen() function returns the length of the string s, not including the
terminating NUL (Ø) character. See also the strcat(), strchr(), strcmp(),
strcpy(), strncat(), strncmp(), strncpy(), and strrchr() functions .

This function is a library function on all Neuron Chip models.

EXAMPLE:

#include <string.h>

void f (void)
{

unsigned long length;

length = strlen("Hello, world!");
}

strncat() FUNCTION
#include <string.h>
char * strncat (char * dest, char * src, unsigned long len);

The strncat() function appends a copy of the first len characters from the
string src to the end of the string dest, and then adds a NUL (Ø) character,
resulting in concatenated strings (thus the name strncat, from string
concatenate). If the src string is shorter than len, no characters are copied
past the NUL character. The function returns a pointer to the string dest.
See also the strcat(), strchr(), strcmp(), strcpy(), strlen(), strncmp(),
strncpy(), and strrchr() functions .

This routine cannot be used to copy overlapping areas of memory, or to write
into EEPROM memory or network variables.

EXAMPLE:

#include <string.h>

void f (void)
{

char buf[40]

strncpy(buf, "Hello There", 6);
strncat(buf, "World News Tonight", 5);

// buf now contains "Hello World"
}

3-76 Functions

strncmp() FUNCTION
#include <string.h>
int strncmp (const unsigned char * s1, const unsigned char * s2, unsigned long
len);

The strncmp() function compares the contents of string s1 and s2, up until
the NUL (Ø) terminator character in the shorter string, or until len
characters have been compared, whichever occurs first. The function
performs a case-sensitive comparison. If the strings match identically, 0 is
returned.

When a mismatch occurs, the characters from both strings at the mismatch
are compared. If the first string's character is greater, using an unsigned
comparison, the return value is positive. If the second string's character is
greater, the return value is negative. Note that the terminating NUL
character is compared just as any other character. See also the strcat(),
strchr(), strcmp(), strcpy(), strlen(), strncat(), strncpy(), and
strrchr() functions.

EXAMPLE:

#include <string.h>

void f (void)
{

int val;
char s1[20], s2[20];

val = strncmp(s1, s2, 10); // Compare first 10 chars
if (!val) {

// Strings are equal
} else if (val < 0) {

// String s1 is less than s2
} else {

// String s1 is greater than s2
}

}

strncpy() FUNCTION
#include <string.h>
char * strncpy (char * dest, const char * src, unsigned long len);

The strncpy() function copies the string pointed to by the parameter src into
the string buffer pointed to by the parameter dest. The copy ends either
when the terminating NUL (Ø) character is copied or when len characters
have been copied, whichever comes first. If the copy is terminated by the
length, a NUL character is not added to the end of the destination string.
See also the strcat(), strchr(), strcmp(), strcpy(), strlen(), strncat(),
strncmp(), and strrchr() functions.

Neuron C Reference Guide 3-77

This routine cannot be used to copy overlapping areas of memory, or to write
into EEPROM memory or network variables.

EXAMPLE:

#include <string.h>

char s[20];

void f (char * p)
{

strncpy(s, p, 19); // Prevent overflow
s[19] = '\0'; // Force termination

}

strrchr() FUNCTION
#include <string.h>
char * strrchr (const char * s, char c);

The strrchr() function scans a string for the last occurrence of a given
character. The function scans a string in the reverse direction (hence the
extra 'r' in the name of the function), looking for a specific character. The
strrchr() function finds the last occurrence of the character c in string s.
The NUL (Ø) terminator is considered to be part of the string. The return
value is a pointer to the character found, otherwise null. See also the
strcat(), strchr(), strcmp(), strcpy(), strlen(), strncat(), strncmp(),
and strncpy() functions.

EXAMPLE:

#include <string.h>

void f (void)
{

char buf[20];
char * p;

strcpy(buf, "Hello World");
p = strrchr(buf, 'o'); // Assigns &(buf[7]) to p
p = strrchr(buf, '\0'); // Assigns &(buf[11]) to p
p = strrchr(buf, 'x'); // Assigns NULL to p

}

3-78 Functions

swap_bytes() BUILT-IN FUNCTION
unsigned long swap_bytes (unsigned long a);

The swap_bytes() built-in function returns the byte-swapped value of a.
See also the description for the high_byte(), low_byte(), and
make_long() functions.

EXAMPLE:

long k;

k = 0x1234L;
k = swap_bytes(k); // k now contains 0x3412L

timers_off() FUNCTION
#include <control.h>
void timers_off (void);

The timers_off() function turns off all software timers. This function could
be called, for example, before an application goes offline.

EXAMPLE:

...
timers_off();
go_offline();

touch_bit() BUILT-IN FUNCTION
unsigned touch_bit(io-object-name, unsigned write-data);

The touch_bit() function writes and reads a single bit of data on the
1-WIRE bus. It can be used for either reading or writing. For reading, the
write-data argument should be one (0x01), and the return value will contain
the bit as read from the bus. For writing, the bit value in the write-data
argument is placed on the 1-WIRE bus, and the return value will normally
contain that same bit value, and can be ignored. This function provides
access to the same internal process that touch_byte() calls.

EXAMPLE:

typedef struct search_data_s {
int search_done;
int last_discrepancy;
unsigned rom_data[8];

} search_data;

Neuron C Reference Guide 3-79

touch_byte() BUILT-IN FUNCTION
unsigned touch_byte(io-object-name, unsigned write-data);

The touch_byte() function sequentially writes and reads eight bits of data
on the 1-WIRE bus. It can be used for either reading or writing. For reading
the write-data argument should be all ones (0xFF), and the return value will
contain the eight bits as read from the bus. For writing the bits in the
write-data argument are placed on the 1-WIRE bus, and the return value will
normally contain those same bits.

touch_first() BUILT-IN FUNCTION
int touch_first(io-object-name, search_data * sd);

The touch_first() function executes the ROM Search algorithm as described
in Book of DS19xx Touch Memory Standards, Dallas Semiconductor, Edition
2.0. Both functions make use of a data structure search_data_s for
intermediate storage of a bit marker and the current ROM data. This data
structure is automatically defined in Neuron C, regardless of whether a
program references the touch I/O functions.

A return value of TRUE indicates whether a device was found, and if so, that
the data stored at rom_data[] is valid. A FALSE return value indicates no
device found. The search_done flag is set to TRUE when there are no more
devices on the 1-WIRE bus. The last_discrepancy variable is used
internally and should not be modified.

To start a new search first call touch_first(). Then, as long as the
search_done flag is not set, call touch_next() as many times as are
required. Each call to touch_first() or touch_next() will take 41ms to
execute at 10MHz (63ms at 5MHz) when a device is being read.

touch_next() BUILT-IN FUNCTION
int touch_next(io-object-name, search_data * sd);

The touch_next() function executes the ROM Search algorithm as described
in Book of DS19xx Touch Memory Standards, Dallas Semiconductor, Edition
2.0. Both functions make use of a data structure search_data_s for
intermediate storage of a bit marker and the current ROM data. This data
structure is automatically defined in Neuron C, regardless of whether a
program references the touch I/O functions.

A return value of TRUE indicates whether a device was found, and if so, that
the data stored at rom_data[] is valid. A FALSE return value indicates no
device found. The search_done flag is set to TRUE when there are no more
devices on the 1-WIRE bus. The last_discrepancy variable is used
internally and should not be modified.

To start a new search first call touch_first(). Then, as long as the
search_done flag is not set, call touch_next() as many times as are
required. Each call to touch_first() or touch_next() will take 41ms to
execute at 10MHz (63ms at 5MHz) when a device is being read.

3-80 Functions

touch_reset() BUILT-IN FUNCTION
int touch_reset (io-object-name);

The touch_reset() function asserts the reset pulse and returns a one (1)
value if a presence pulse was detected, or a zero (0) if no presence pulse was
detected, or a minus-one (-1) value if the 1-WIRE bus appears to be stuck low.
The operation of this function is controlled by several timing constants. The
first is the reset pulse period, which is 500µs. Next, the Neuron Chip or
Smart Transceiver releases the 1-WIRE bus and waits for the 1-WIRE bus to
return to the high state. This period is limited to 275µs, after which the
touch_reset() function will return a (-1) value with the assumption that the
1-WIRE bus is stuck low. There also is a minimum value for this period, it
must be >4.8µs @10MHz, or 9.6µs @5MHz.

The touch_reset() function does not return until the end of the presence
pulse has been detected.

tst_bit() FUNCTION
#include <byte.h>
boolean tst_bit (void * array, unsigned bitnum);

The tst_bit() function tests a bit in a bit array pointed to by array. Bits are
numbered from left to right in each byte, so that the first bit in the array is
the most significant bit of the first byte in the array. Like all arrays in C,
this first element corresponds to index 0 (bitnum 0). The function returns a
boolean value, TRUE if bit was set, FALSE if bit was not set. See also the
clr_bit() and set_bit() functions.

EXAMPLE:

#include <byte.h>

unsigned short a[4];

memset(a, 0, 4); // Clear all bits at once
set_bit(a, 4); // Set a[0] to 0x08 (5th bit)

if (tst_bit(a, 4)) {
// Code executes here if bit was set

}

Neuron C Reference Guide 3-81

update_address() FUNCTION
#include <access.h>
void update_address (const address_struct * address, int index);

The update_address() function copies from the structure referenced by the
address pointer parameter to the address table entry specified by the index
parameter.

See the Neuron Chip or Smart Transceiver data book for a description of the
data structure.

EXAMPLE:

#include <access.h>
address_struct address_copy;
msg_tag my_mt;

address_copy = *(access_address(addr_table_index(my_mt)));
// Modify the address_copy here as necessary
update_address(&address_copy, addr_table_index(my_mt));

update_alias() FUNCTION
#include <access.h>
void update_alias (const alias_struct * alias, int index);

The update_alias() function copies from the structure referenced by the
alias pointer parameter to the alias table entry specified by the index
parameter.

The Neuron 3120 Chip with version 4 firmware does not support aliasing.

See the Neuron Chip or Smart Transceiver data book for a description of the
data structure.

EXAMPLE:

#include <access.h>
alias_struct alias_copy;
unsigned int index;

alias_copy = *(access_alias(index));
// Modify the alias_copy here as necessary
update_alias(&alias_copy, index);

update_clone_domain() FUNCTION
#include <access.h>
void update_clone_domain (domain_struct *domain, int index);

The update_clone_domain() function copies from the structure referenced
by the domain pointer parameter to the domain table entry specified by the
index parameter.

This function differs from update_domain() in that it is only used for a
cloned device. A cloned device is a device which does not have a unique

3-82 Functions

domain/subnet/node address on the network. Typically, cloned devices are
intended for low-end systems where network tools are not used for
installation. The LonTalk® protocol inherently disallows this configuration
because devices reject messages which have the same source address as their
own address. The update_clone_domain() function enables a device to
receive a message with a source address equal to its own address. There are
several restrictions when using cloned devices, see the LonBuilder User's
Guide and NodeBuilder User’s Guide. More information about cloned devices
can be found in the Neuron Chip or Smart Transceiver data book.

EXAMPLE:

#include <access.h>
domain_struct domain_copy;

domain_copy = *(access_domain(0));
// Modify the domain copy as necessary
update_clone_domain(&domain_copy, 0);

update_config_data() FUNCTION
#include <access.h>
void update_config_data (const config_data_struct *p);

The update_config_data() function copies from the structure referenced by
the configuration data pointer parameter p to the config_data variable. The
config_data variable is declared const, but can be modified via this
function.

See the Neuron Chip or Smart Transceiver data book for a description of the
data structure.

EXAMPLE:

#include <access.h>
config_data_struct config_data_copy;

config_data_copy = config_data;
// Modify the config_data_copy as necessary
update_config_data(&config_data_copy);

Neuron C Reference Guide 3-83

update_domain() FUNCTION
#include <access.h>
void update_domain (domain_struct * domain, int index);

The update_domain() function copies from the structure referenced by the
domain pointer parameter to the domain table entry specified by the index
parameter.

See the Neuron Chip or Smart Transceiver data book for a description of the
data structure.

EXAMPLE:

#include <access.h>
domain_struct domain_copy;

domain_copy = *(access_domain(0));
// Modify the domain_copy as necessary
update_domain(&domain_copy, 0);

update_nv() FUNCTION
#include <access.h>
void update_nv (const nv_struct * nv-entry, int index);

The update_nv() function copies from the structure referenced by the nv-
entry pointer parameter to the network variable configuration table entry as
specified by the index parameter.

See the Neuron Chip or Smart Transceiver data book for a description of the
data structure.

EXAMPLE:

#include <access.h>
nv_struct nv_copy;
network output int my_nv;

nv_copy = *(access_nv(nv_table_index(my_nv)));
// Modify the nv_copy here as necessary
update_nv(&nv_copy,nv_table_index(my_nv));

3-84 Functions

watchdog_update() FUNCTION
#include <control.h>
void watchdog_update (void);

The watchdog_update() function updates the watchdog timer. The
watchdog timer times out in the range of .84 to 1.68 seconds with a 10MHz
Neuron Chip input clock. The watchdog timer period scales inversely with
the input clock frequency. The scheduler updates the watchdog timer before
entering each critical section. To ensure that the watchdog timer does not
expire, call the watchdog_update() function periodically within long tasks
(or when in bypass mode). The post_events(), msg_receive(), and
resp_receive() functions also update the watchdog timer, as well as the
pulsecount output object.

Within long tasks when the scheduler does not run, the watchdog timer may
expire, causing the device to reset. To prevent the watchdog timer from
expiring, an application program can call the watchdog_update() function
periodically.

EXAMPLE:

boolean still_processing;
...
while (still_processing) {

watchdog_update();
...

}

4
Timer Declarations

This chapter provides reference information for declaring and
using Neuron C timers.

4-2 Timer Declarations

Timer Object
A timer object is declared using one of the following:

mtimer [repeating] timer-name [=initial-value];

stimer [repeating] timer-name [=initial-value];

mtimer indicates a millisecond timer.

stimer indicates a second timer.

repeating is an option for the timer to restart itself
automatically upon expiration. With this option,
accurate timing intervals can be maintained even if
the application cannot respond immediately to an
expiration event.

timer-name is a user-supplied name for the timer. Assigning a
value to this name starts the timer for the specified
length of time. The value of a timer object is an
unsigned long (0-65,535); however, the maximum
value used for a millisecond timer should not exceed
64,000. A timer that is running or has expired can be
started over by assigning a new value to this object.
The timer object can be evaluated while the timer is
running, and it will indicate the time remaining.
Assigning a value of 0 to this timer turns the timer off.
Up to 15 timer objects may be declared in an
application.

initial-value specifies an optional initial value to be loaded into the
timer on power-up or reset. Zero is loaded if no initial-
value is supplied.

When a timer expires, the timer_expires event becomes TRUE. The
timer_expires event becomes FALSE when the timer state is read in the
TRUE state or when the timer is set to zero.

EXAMPLE:

stimer led_timer = 5; // start timer with value of 5 sec

when (timer_expires(led timer))
{

toggle_led();
led_timer = 2; // restart timer with value of 2 sec

}

The timers_off() function can be used to turn off all application timers – for
example, before an application goes offline. See Chapter 2 of the Neuron C
Programmer's Guide for a discussion of timer accuracy.

5
Configuration Property and

Network Variable Declarations

This chapter describes the configuration property declarations
and network variable declarations for a Neuron C program. It
also describes how configuration properties are associated with
the device, with a functional block on the device, or with a
network variable on the device. Finally, this chapter describes
the syntax for accessing the configuration properties from the
device’s program.

5-2 Network Variable Declarations

Introduction
The external application interface of a LONWORKS device consists of its
functional blocks, network variables, and configuration properties. The
network variables are the device’s means of sending and receiving data using
interoperable data types and using an event-driven programming model. The
configuration properties are the device’s means of providing externally
exposed configuration data, again using interoperable data types. The
configuration data items can be read and written by a network tool. The
device interface is organized into functional blocks, each of which provides a
collection of network variables and configuration properties, that are used
together to perform one task. These network variables and configuration
properties are called the functional block members.

Configuration properties can be implemented using two different techniques.
The first, called a configuration network variable, uses a network variable to
implement a configuration property. This has the advantage enabling the
configuration property to be modified by another LONWORKS device, just like
any other network variable. It also has the advantage of having the
Neuron C event mechanism available to provide notification of updates to the
configuration property.

The disadvantages of configuration network variables are that they are
limited to a maximum of 31 bytes each, and a Neuron Chip or Smart
Transceiver hosted device is limited to a maximum of 62 network variables.

The second method of implementing configuration properties uses
configuration files to implement the configuration properties for a device.
Rather than being separate externally-exposed data items, all configuration
properties implemented within configuration files are combined into one or
two blocks of data called value files. A value file consists of configuration
property records of varying length concatenated together. Each value file
must fit as contiguous bytes into the memory space in the device that is
accessible by the application. When there are two value files, one contains
writeable configuration properties and the second contains read-only data.
To permit a network tool to access the data items in the value file, there is
also a template file, an array of text characters that describes the elements in
the value files.

The advantages of implementing configuration properties as configuration
files is that there are no limits on configuration property size or the number
of configuration properties other than the limitations on the size of a file.
The disadvantages are that other devices cannot connect to or poll a
configuration property implemented as a configuration file; requiring a
network tool to modify a configuration property implemented as a
configuration file; and, no events are automatically generated upon an update
of a configuration property implemented as a configuration file. The
application can force notification of updates by requiring network tools to
disable a functional block or take a device offline when a configuration
property is updated, and then re-enable or put the device back online.

Neuron C Reference Guide 5-3

You can declare functional blocks, network variables, and configuration
properties using the Neuron C Version 2 syntax. You can declare
configuration properties that are implemented within configuration files or
configuration network variables. The Neuron C Version 2 compiler uses
these declarations to generate the value files, template file, all required self-
identification and self-documentation data, and the device interface file (.xif
extension) for a Neuron C application.

Configuration Property Declarations
You can implement a configuration property as a configuration network
variable or as part of a configuration file. To implement a configuration
property as a configuration network variable, declare it using the network
… config_prop syntax described in the next section on Network Variable
Declarations. To implement a configuration property as a part of a
configuration file, declare it with the cp_family syntax described in this
section.

The complete syntax for declaring a configuration property implemented as
part of a configuration file is the following:

 [const] type cp_family [cp-modifiers] identifier [= initial-value] ;

Any number of CP families may be declared in a Neuron C program.
Declarations of CP families do not result in any data memory being used
until a family member is created through the instantiation process. In this
regard, the CP family is similar to an ANSI C typedef, but it is more than
just a type definition.

CP families that are declared using the const keyword have their family
members placed in the read-only value file. All other CP families have their
family members placed in the modifiable value file.

The type for a CP family cannot be just a standard C type such as int or
char. Instead, the declaration must use a configuration property type from a
resource file. The configuration property type may either be a standard
configuration property type (SCPT) or a user configuration property type
(UCPT). There are over 200 SCPT definitions available today, and you can
create your own manufacturer-specific types using UCPTs. The SCPT
definitions are stored in the standard.type file, which is part of the standard
resource file set included with the NodeBuilder tool. There may be many
similar resource files containing UCPT definitions, and these are managed on
the computer by the NodeBuilder Resource Editor as described in the
NodeBuilder User’s Guide.

A configuration property type is also similar to an ANSI C typedef, but it is
also much more. The configuration property type also defines a standardized
semantic meaning for the type. The configuration property definition in a
resource file contains information about the default value, minimum and
maximum valid values, a designated (optional) invalid value, and language
string references that permit localized descriptive information, additional
comments, and units strings to be associated with the configuration property
type.

5-4 Network Variable Declarations

The initial-value in the declaration of a CP family is optional. If initial-value
is not provided in the declaration, the default value specified by the resource
file is used. The initial-value given is an initial value for a single member of
the family, but the compiler will replicate the initial value for each
instantiated family member. For more information about CP families and
instantiated members, see the discussion in Chapter 4 of the Neuron C
Programmer’s Guide.

The cp_family declaration is repeatable. The declaration may be repeated
two or more times, and, as long as the duplicated declarations match in every
regard, the compiler will treat these as a single declaration.

Configuration Property Modifiers (cp-modifiers)
The configuration property modifiers are an optional part of the CP family
declaration discussed above, as well as the configuration network variable
declaration discussed later.

The complete syntax for the configuration property modifiers is shown below:

 cp-modifiers : [cp_info (cp-option-list)] [range-mod]

 cp-option-list :
 cp-option-list , cp-option
 cp-option

 cp-option : device_specific | manufacturing_only | object_disabled
 | offline | reset_required

 range-mod : range_mod_string (concatenated-string-constant)

The keywords can occur in any order. There must be at least one keyword.
For multiple keywords, a keyword must not appear more than once, and
keywords must be separated by commas.

You can specify the following configuration property options:

device_specific Specifies a configuration property that will always be
read from the device instead of relying upon the value
in the device interface file or a value stored in a
network database. This is used for configuration
properties that must be managed by the device, such
as a setpoint that is updated by a local operator
interface on the device. This option requires the CP
family or configuration property network variable to
be declared as const.

manufacturing_only Specifies a factory setting that can be read or written
when the device is manufactured, but is not normally
(or ever) modified in the field. In this way a standard
network tool may be used when a device is
manufactured to calibrate the device, while a field
installation tool would observe the flag in the field and
prevent updates or require a password to modify the
value.

Neuron C Reference Guide 5-5

object_disabled Specifies that a network tool must disable the
functional block containing the configuration property,
take the device offline, or ensure that the functional
block is already disabled or the device is already
offline, before modifying the configuration property.

offline Specifies that a network tool must take this device
offline, or ensure the device is already offline, before
modifying the configuration property.

reset_required specifies that a network tool must reset the device
after changing the value of the configuration property.

The optional range-mod modifier allows you to specify a range-modification
string that modifies the valid range for the configuration property defined by
the resource file. The range-modification string can only be used with fixed-
point and floating-point types, and consists of a pair of either fixed-point or
floating-point numbers delimited by a colon. The first number is the lower
limit while the second number is the high limit. If either the high limit or the
low limit should be the maximum or minimum specified in the configuration
property type definition, then the field is empty to specify this. In the case of
a structure or an array, if one member of the structure or array has a range
modification, then all members must have a range modification specified. In
this case, each range modification pair is delimited by the ASCII '|'. To
specify no range modification for a member of a structure (that is, revert to
the default for that member), encode the field as '|'. Use the same encoding
for structure members that cannot have their ranges modified due to their
data type. The '|' encoding is only allowed for members of structures.
Whenever a member of a structure is not a fixed or floating-point number, its
range may not be restricted. Instead, the default ranges must be used. In
the case of an array, the specified range modifications apply to all elements of
the array. For example, to specify a range modification for a 3-member
structure where the second member has the default ranges, and the third
member only has an upper limit modification, the range modification string is
encoded as: "n:m||:m;". Positive values for range modifications and their
exponents (if any) are implicit, while negative numbers and negative
exponents must be explicitly designated as such with a preceding '-'
character. Floating-point numbers use a '.' character for the decimal point.
Fixed-point numbers must be expressed as a signed 32-bit integer. Floating-
point numbers must be within the range of an IEEE 32-bit floating-point
number. To express an exponent, precede the exponent by an 'e' or an 'E' and
then follow with an integer value.

5-6 Network Variable Declarations

Configuration Property Instantiation
As discussed above, the cp_family declaration is similar to a C language
typedef because no actual variables are created as a result of the
declaration. In the case of a type definition, variables are instantiated when
the type definition is used in a later declaration that is not, itself, another
typedef. At that time, variables are instantiated, which means that
variables are declared and computer storage is created for the variables. The
variables can then be used in later expressions in the executable code of the
program.

Configuration properties may apply to a device, one or more functional
blocks, or one or more network variables. In each case, a configuration
property is made to apply to its respective objects through a property list.
Property lists for the device will be explained in the next section, property
lists for network variables will be explained later in this chapter, and
property lists for functional blocks will be explained in the chapter on
Functional Block Declarations.

The instantiation of CP family members occurs when the CP family
declaration’s identifier is used in a property list. However, a configuration
network variable is already instantiated at the time it is declared. For a
configuration network variable, the property list serves only to inform the
compiler of the association between the configuration property and the object
or objects to which it applies.

Device Property Lists
A device property list declares instances of configuration properties defined
by CP family statements and configuration network variable declarations
that apply to a device. The complete syntax for a device property list is as
follows:

 device_properties { property-reference-list }

 property-reference-list :
 property-reference-list , property-reference
 property-reference

 property-reference :
 property-identifier [= initializer] [range-mod]
 property-identifier [range-mod] [= initializer]

 range-mod : range_mod_string (concatenated-string-constant)

 property-identifier : identifier [constant-expression]
 identifier

The device property list begins with the device_properties keyword. It
then contains a list of property references, separated by commas. Each
property reference must be the name of a previously declared CP family or
the name of a previously declared configuration network variable. If the
network variable is an array, only a single array element may be chosen as
the device property, so an array index must be given as part of the property
reference in that case.

Neuron C Reference Guide 5-7

Following the property-identifier, there may be an optional initializer, and an
optional range-mod. These optional elements may occur in either order if
both are given. If present, the instantiation initializer for a CP family
member overrides any initializer provided at the time of declaration of the CP
family; thus, using this mechanism, some CP family members can be
initialized specially, with the remaining CP family members having a more
generic initial value. If a network variable is initialized in multiple places (in
other words, in its declaration as well as in its use in a property list), the
initializations must be identical in type and value.

The device property list appears at file scope. This is the same level as a
function declaration, a task declaration, or a global data declaration.

A Neuron C program may have multiple device property lists. These lists
will be merged together by the compiler to create one combined device
property list. This feature is provided for modularity in the program
(different modules can specify certain properties for the device, but the list
will be combined by the compiler). However, you cannot have more than one
configuration property of any given SCPT or UCPT type that applies to the
device. If two separate modules specify a particular configuration of the
same type in the device property lists, this situation will cause a compile-time
error.

Finally, each property instantiation may have a range modification string
following the property identifier. The range modification string works
identically to the range-mod described above in Configuration Property
Modifiers (cp-modifiers). A range-modification string provided in the
instantiation of a CP family member overrides any range-modification string
provided in the declaration of the CP family.

EXAMPLE:

UCPTsomeDeviceCp cp_family cpSomeDeviceCp;
SCPTlocation cp_family cpLocation;

device_properties {
cpSomeDeviceCp,
cpLocation = { "Unknown" }

};

Network Variable Declarations Syntax
The complete syntax for declaring a network variable is one of the following:

 network input | output [netvar-modifier]
 [class] type [connection-info] [config_prop [cp-modifiers]]
 identifier [= initial-value] [nv-property-list] ;

 network input | output [netvar-modifier]
 [class] type [connection-info] [config_prop [cp-modifiers]]
 identifier [array-bound] [= initializer-list] [nv-property-list] ;

The brackets around the array-bound field are shown in bold type. The
brackets do not, in this case, indicate an optional field. They are a required
part of the syntax of declaring an array, and must be entered into the
program code.

5-8 Network Variable Declarations

Up to 62 network variables (counting each array element as a separate
network variable), including configuration network variables, may be
declared in a Neuron C program.

Network Variable Modifiers (netvar-modifier)
One or more of the following optional modifiers can be included in the
declaration of each network variable:

sync | synchronized Specifies that all values assigned to this network
variable must be propagated, and in their original
order. Mutually exclusive with the polled modifier.

polled Specifies that the value of the output network variable
is to be sent only in response to a poll request from a
device that reads this network variable. When this
keyword is omitted, the value is propagated over the
network every time the variable is assigned a value
and also when polled. Mutually exclusive with the
sync modifier. Used only for output network
variables.

changeable_type Specifies that the network variable type can be
changed at runtime. If the keyword sync or polled is
used (these two keywords are mutually exclusive),
then the changeable_type keyword must follow the
other keyword.

 The changeable_type keyword requires the program
ID to be specified, and requires the Changeable
Interface flag to be set in that program ID. A
compilation error will occur otherwise.

sd_string (concatenated-string-constant)

 Sets a network variable's self-documentation (SD)
string of up to 1023 characters. This modifier can only
appear once per network variable declaration. If the
keyword sync or polled is used (these two keywords
are mutually exclusive), or the changeable_type
keyword is used, then the sd_string must follow these
other keywords. Concatenated string constants are
permitted. Each variable's SD string may have a
maximum length of 1023 bytes.

 The use of any of the following Neuron C Version 2
keywords causes the compiler to take control over the
generation of self-documentation strings: fblock,
config_prop, cp, device_properties,
nv_properties, fblock_properties, or cp_family.

 In an application that uses compiler-generated SD
data, additional SD data may still be specified with
the sd_string() modifier. The compiler will append
this additional SD information to the compiler-
generated SD data, but it will be separated from the
compiler-generated information with a semicolon.

Neuron C Reference Guide 5-9

Network Variable Classes (class)
Network variables constitute one of the storage classes in Neuron C. They
can also be combined with one or more of the following classes:

config This variable class is equivalent to the const and
eeprom classes, except the variable is also identified
as a configuration variable to network tools which
access the device's interface information. The config
keyword is obsolete and is included only for legacy
applications. The Neuron C compiler will not
generate self-documentation data for config class
network variables. New applications should use the
configuration network variable syntax explained in
Configuration Network Variables below.

const The network variable is of const type. The Neuron C
compiler will not allow modifications of const type
variables by the device’s program. However, a const
network input variable will still be placed in
modifiable memory and the value will change as a
result of a network variable update from another
device.

eeprom The network variable is placed in EEPROM or flash
memory instead of RAM. All variables are placed in
RAM by default. EEPROM and flash memory is only
appropriate for variables which change infrequently,
due to the overhead and execution delays inherent in
writing such memory, and due to the limited number
of writes for such memory devices.

far The network variable is placed in the far section of the
variable space. In Neuron C, variables are placed in
near memory by default, but the near memory areas
are limited in space. The maximum size of near
memory areas is approximately 256 bytes of RAM and
255 bytes of EEPROM, but may be less in some
circumstances.

offchip This keyword places the variable in the off-chip
portion of the variable space. By default, the linker
places variables in either space as it chooses,
depending on availability. If the requested memory is
not available, the link fails.

onchip This keyword places the variable in the on-chip
portion of the variable space. By default, the linker
places variables in either space as it chooses,
depending on availability. If the requested memory is
not available, the link fails.

uninit This keyword prevents compile-time initialization of
variables. This is useful for eeprom variables that
should not or need not be written by program load or
reload.

5-10 Network Variable Declarations

Network Variable Types (type)
A network variable can be declared using any of the following types:

• A standard network variable type (SNVT) as described in Chapter 3 of the
Neuron C Programmer's Guide. Use of a SNVT promotes interoperability.
See the SNVT Master List and Programmer's Guide for a list of currently
defined SNVTs.

• A user network variable type (UNVT) as described in Chapter 3 of the
Neuron C Programmer's Guide. UNVTs are defined using the NodeBuilder
Resource Editor as described in the NodeBuilder User’s Guide. The Resource
Editor tool assists in the creation and editing of UNVTs.

• Any of the variable types specified in Chapter 1 of the Neuron C
Programmer's Guide, except for pointers. The types are:

[signed] long int
unsigned long int
signed char
[unsigned] char
[signed] [short] int
unsigned [short] int
enum (An enum is int type)

Structures and unions of the above types up to 31 bytes long (Structures and
unions may not exceed 31 bytes in length when used as the type of a network
variable).

Single-dimension arrays of the above types, up to 62 elements.

 SNVTs and UNVTs defined in resource files should be used instead of these
base types.

• A typedef. Neuron C provides some predefined type definitions, for example:

 typedef enum {FALSE, TRUE} boolean;

 SNVTs and UNVTs defined in resource files should be used instead of
typedefs.

• The user can also define other type definitions and use these for network
variable types.

 SNVTs and UNVTs defined in resource files should be used instead of
typedefs.

Neuron C Reference Guide 5-11

Configuration Network Variables
The syntax for network variable declarations above includes the following
syntax fragment for declaring the network variable as a configuration
property:

 network ... [config_prop [cp-modifiers]] ...

The config_prop keyword (which can also be abbreviated as cp) is used to
declare to the compiler that the network variable (or array) is a configuration
property (or array of configuration properties).

The cp-modifiers for configuration network variables are identical to the cp-
modifiers described in Configuration Property Modifiers (cp-modifiers) earlier
in this chapter.

Network Variable Property Lists (nv-property-list)
A network variable property list declares instances of configuration
properties defined by CP family statements and configuration network
variables declarations that apply to a network variable. The complete syntax
for a network variable’s property list is as follows:

 nv_properties { property-reference-list }

 property-reference-list :
 property-reference-list , property-reference
 property-reference

 property-reference :
 property-identifier [= initializer] [range-mod]
 property-identifier [range-mod] [= initializer]

 range-mod : range_mod_string (concatenated-string-constant)

 property-identifier : [property-modifier] identifier [constant-expression]
 [property-modifier] identifier

 property-modifier : static | global

EXAMPLE:

// CP for heartbeat and throttle (default 1 min each)
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 };
SCPTminSndT cp_family cpMinSendT = { 0, 0, 1, 0, 0 };

// NV with heartbeat and throttle:
network output SNVT_lev_percent nvoValue
nv_properties {

cpMaxSendT,
// override default for minSendT to 30 seconds:
cpMinSendT = { 0, 0, 0, 30, 0 }

};

5-12 Network Variable Declarations

The network variable property list begins with the nv_properties keyword.
It then contains a list of property references, separated by commas, exactly
like the device property list. Each property reference must be the name of a
previously declared CP family or the name of a previously declared
configuration network variable. The rest of the syntax is very similar to the
device property list syntax discussed above.

Following the property-identifier, there may be an optional initializer, and an
optional range-mod. These optional elements may occur in either order if
both are given. If present, the instantiation initializer for a CP family
member overrides any initializer provided at the time of declaration of the CP
family; thus, using this mechanism, some CP family members can be
initialized specially, with the remaining CP family members having a more
generic initial value. If a network variable is initialized in multiple places (in
other words, in its declaration as well as in its use in a property list), the
initializations must match.

You cannot have more than one configuration property of any given SCPT or
UCPT type that applies to the same network variable. A compile-time error
will occur when a particular configuration property type is used for more
than one property in the network variable’s property list.

Finally, each property instantiation may have a range-modification string
following the property identifier. The range-modification string works
identically to the range-mod described above in Configuration Property
Modifiers (cp-modifiers). A range-modification string provided in the
instantiation of a CP family member overrides any range-modification string
provided in the declaration of a CP family.

Unlike device properties, network variable properties may be shared between
two or more network variables. The use of the global keyword creates a CP
family member that is shared between two or more network variables. The
use of the static keyword creates a CP family member that is shared
between all the members of a network variable array, but not with any other
network variables outside the array. See the discussion of network variable
properties in the Neuron C Programmer’s Guide for more information on this
topic.

A configuration network variable may not, itself, also have a network
variable property list. That is, you cannot define configuration properties
that apply to other configuration properties.

Neuron C Reference Guide 5-13

Network Variable Connection Information
(connection-info)

The following optional fields can be included in the declaration of each
network variable. Each of these fields is described in the following
paragraphs. The fields can be specified in any order. This information can
be used by a network tool as described in the LonBuilder User's Guide and
NodeBuilder User’s Guide. These connection information assignments can be
overridden by a network tool after a device is installed, unless otherwise
specified using the nonconfig option, as detailed below.

 bind_info (
 [expand_array_info]
 [offline]
 [unackd | unackd_rpt | ackd [(config | nonconfig)]]
 [authenticated | nonauthenticated [(config | nonconfig)]]
 [priority | nonpriority [(config | nonconfig)]]
 [rate_est (const-expr)]
 [max_rate_est (const-expr)]
)

expand_array_info applies to a network variable array. This option is
used to tell the compiler that, when publishing the
external interface in the SI and SD data and in the
XIF file, each element of a network variable array
should be treated as a separate network variable for
naming purposes. The names of the array elements
have unique identifying characters postfixed. These
identifying characters are typically the index of the
array element. Thus, a network variable array xyz[4]
would become the four separate network variables
xyz0, xyz1, xyz2, and xyz3.

offline Specifies that a network tool must take this device
offline, or ensure that the device is already offline,
before updating the network variable. This option is
commonly used with a config class network variable
(this is an obsolete usage, but is supported for legacy
applications).

 Do not use this feature in the bind_info for a
configuration network variable that is declared using
the config_prop or cp keyword. Use the offline
option in the cp_info, instead.

unackd | unackd_rpt | ackd [(config | nonconfig)]

 selects the LonTalk protocol service to use for
updating this network variable. The allowed types
are the following:

 unackd — unacknowledged service; the update is
sent once and no acknowledgment is expected.

 unackd_rpt — repeated service; the update is sent
multiple times and no acknowledgments are expected.

5-14 Network Variable Declarations

 ackd (the default) — acknowledged service with
retry; if acknowledgments are not received from all
receiving devices before the layer 4 retransmission
timer expires, the message will be sent again, up to
the retry count.

 An unacknowledged (unackd) network variable uses
minimal network resources to propagate its values to
other devices. As a result, propagation failures are
more likely to occur, and failures are not detected by
the device. This class might be used for variables that
are updated on a frequent, periodic basis, where loss
of an update is not critical, or in cases where the
probability of a collision or transmission error is
extremely low.

 The repeated (unackd_rpt) service is typically used
when a message is propagated to many devices, and a
reliable delivery is required. This reduces the
network traffic caused by a large number of devices
sending acknowledgements simultaneously and can
provide the same reliability as the acknowledged
service by using a repeat count equal to the retry
count.

 The keyword config, the default, indicates that this
service type can be changed by a network tool. This
option allows a network tool to change the service
specification at installation time.

 The keyword nonconfig indicates that this service
cannot be changed by a network management tool.

authenticated | nonauthenticated [(config | nonconfig)]
Specifies whether the network variable update
requires authentication. With authentication, the
identity of the sending device is verified by all
receiving devices. Abbreviations for authentication
are auth and nonauth. The config and nonconfig
keywords specify whether the authentication
designation can be changed by a network tool.

A network variable connection will be authenticated only if the readers and
writers have the authenticated keywords specified. However, if only the
originator of a network variable update or poll has used the keyword, the
connection will not be authenticated (although the update will take place).
See also the Authentication section in Chapter 3 of the Neuron C
Programmer's Guide.

The default is nonauth (config).

NOTE: Use only the acknowledged service with authenticated updates. Do
not use the unacknowledged or repeated services.

priority | nonpriority [(config | nonconfig)]

Neuron C Reference Guide 5-15

 Specifies whether the network variable update has
priority access to the communications channel. This
field specifies the default value. The config and
nonconfig keywords specify whether the priority
designation can be changed by a network tool. The
default is config. All priority network variables in a
device use the same priority time slot since each
device is configured to have no more than one priority
time slot.

 The default is nonpriority (config).

 The priority keyword affects output or polled input
network variables. When a priority network variable
is updated, its value will be propagated on the
network within a bounded amount of time as long as
the device is configured to have a priority slot by a
network tool. (The exact bound is a function of the bit
rate and priority.) This is in contrast to a
nonpriority network variable update, whose delay
before propagation is unbounded.

nonbind A message tag which carries no addressing
information and does not consume an address table
entry. Use nonbind for message tags that exclusively
use explicit addressing and, therefore, do not require
an address table entry.

rate_est(const-expr) The estimated sustained message rate, in tenths of
messages per second, that the associated message tag
is expected to transmit. The allowable value range is
from 0 to 18780 (0 to 1878.0 messages per second).

max_rate_est(const-expr)
The estimated maximum message rate, in tenths of
messages per second, that the associated message tag
is expected to transmit. The allowable value range is
from 0 to 18780 (0 to 1878.0 messages per second).

NOTE: It may not always be possible to determine rate_est and
max_rate_est. For example, message output rates are often a function of
the particular network where the device is installed. These values may be
used by a network tool to perform network load analysis and are optional.

Although any value in the range 0 - 18,780 may be specified, not all values
are used. The values are mapped into encoded values n in the range 0 - 127.
Only the encoded values are stored in the device's self-identification (SI) data.
The actual value can be reconstructed from the encoded value. If the encoded
value is zero, the actual value is undefined. If the encoded value is in the

range 1-127, the actual value is a=2(n/8)-5, rounded to the nearest tenth. The
value a, produced by the formula, is in units of messages per second.

5-16 Network Variable Declarations

Accessing Property Values from a Program
Configuration properties can be accessed from a program just as any other
variable can be accessed. For example, you can use configuration properties
as function parameters and you can use addresses of configuration
properties.

However, to use a CP family member, the compiler must know which family
member is being accessed, because there may be more than one member of
the same CP family with the same name applying to different network
variables. The syntax for accessing a configuration property from a network
variable’s property list is as follows:

 nv-context :: property-identifier

 nv-context : identifier [index-expr]
 identifier

EXAMPLE:

// CP for heartbeat and throttle (default 1 min each)
SCPTmaxSndT cp_family cpMaxSendT = { 0, 0, 1, 0, 0 };
SCPTminSndT cp_family cpMinSendT = { 0, 0, 1, 0, 0 };

// NV with heartbeat and throttle:
network output SNVT_lev_percent nvoValue
nv_properties {

MyMaxSendT,
// override default for minSendT to 30 seconds:
MyMinSendT = { 0, 0, 0, 30, 0 }

};

void f(void)
{

...
if (nvoValue::MyMaxSendT.seconds > 0) {

...
}

}

The particular family member is identified by a qualifier that precedes it.
This qualifier is called the context. The context is followed by two consecutive
colon characters, and then the name of the property. Since there cannot be
two or more properties with the same configuration property type that apply
to the same network variable, this means that each property is unique within
a particular context. The context therefore uniquely identifies the property.
For example, a network variable array, nva, with 10 elements, could be
declared with a property list referencing a CP family named xyz. There
would then be 10 different members of the xyz CP family, all with the same
name. However, adding the context, such as nva[4]::xyz, or nva[j]::xyz,
uniquely identifies the family member.

Neuron C Reference Guide 5-17

Since the same CP family could also be used as a device property, there is a
special context defined for the device. The device’s context is just two
consecutive colon characters without a preceding context identifier.

Finally, even though a configuration network variable can be uniquely
accessed via its variable identifier, it can also be accessed equally well
through the context expression, just like the CP family members.

For more information and for example on accessing configuration properties,
see Configuration Properties in the Neuron C Programmer’s Guide.

6
Functional Block Declarations

This chapter provides reference information for functional
block declarations. The Neuron C language allows creation of
functional blocks (also called LONMARK objects) to group
network variables and configuration properties that perform a
single task together.

6-2 Compiler Directives

Introduction
The external application interface of a LONWORKS device consists of its
functional blocks, network variables, and configuration properties. A
functional block is a collection of network variables and configuration
properties, which are used together to perform one task. These network
variables and configuration properties are called the functional block
members.

Functional blocks are defined by functional profiles. A functional profile is
used to describe common units of functional behavior. Each functional profile
defines mandatory and optional network variables and configuration
properties. Each functional block implements an instance of a functional
profile. A functional block must implement all the mandatory network
variables and configuration properties defined by the functional profile, and
may implement any of the optional network variables and configuration
properties defined by the functional profile. A functional block may also
implement network variables and configuration properties not defined by the
functional profile – these are called implementation-specific network
variables and configuration properties.

Functional profiles are defined in resource files. You can use standard
functional profiles defined in the standard resource file set, or you can define
your own functional profiles in your own resource file sets. A functional
profile defined in a resource file is also called a functional profile template
(FPT).

You can declare functional blocks in your Neuron C applications using fblock
declarations. These declarations are described in this chapter.

A functional block declaration does not cause the compiler to generate any
executable code, though the compiler does create some data structures that
are used to accomplish various functional block features. Principally, the
functional block creates associations among network variables and
configuration properties. The compiler then uses these associations to create
the self-documentation (SD) and self-identification (SI) data in the device and
in its associated device interface file (.xif extension).

The functional block information in the device interface file or the SD and SI
data communicates the presence and names of the functional blocks
contained in the device to a network tool. The information also
communicates which network variables and configuration properties in the
device are members of each functional block.

Neuron C Reference Guide 6-3

Functional Block Declarations Syntax
The complete syntax for declaring a functional block is the following:

 fblock FPT-identifier { fblock-body } identifier [array-bounds]
 [ext-name] [fb-property-list] ;

 array-bounds : [const-expr]

 ext-name : external_name (concatenated-string-const)
 external_resource_name (concatenated-string-
const)
 external_resource_name (const-expr : const-expr)

 fblock-body : fblock-member-list [; director-function]

 fblock-member-list : fblock-member-list ; fblock-member
 fblock-member

 fblock-member : nv-reference implements member-name
 nv-reference impl-specific

 impl-specific : implementation_specific (const-expr) member-
name

 nv-reference : nv-identifier array-index
 nv-identifier

 array-index : [const-expr]

 director-function : director identifier ;

EXAMPLE:

// Prototype for director function
extern void MyDirector (unsigned uFbIdx, int nCmd);

// Network variables referenced by this fblock:
network output SNVT_lev_percent nvoValue;
network input SNVT_count nviCount;

// The functional block itself ...
fblock SFPTanalogInput {

nvoValue implements nvoAnalog;
nviCount implementation_specific(128) nviCount;
director myDirector;

} MyAnalogInput external_name("AnalogInput");

The functional block declaration begins with the fblock keyword, followed by
the name of a functional profile from a resource file. The functional block is
an implementation of the functional profile. The functional profile defines
the network variable and configuration property members, a unique key
called the functional profile key, and other information. The network variable
and configuration property members are divided into mandatory members
and optional members. Mandatory members must be implemented, and
optional members may or may not be implemented.

The functional block declaration then proceeds with a member list. In this
member list, network variables are associated with the abstract member
network variables of the profile. These network variables must have
previously been declared in the program. The association between the
members of the functional block declaration and the abstract members of the
profile is performed with the implements keyword. At a minimum, every

6-4 Compiler Directives

mandatory abstract member network variable of the profile must be
implemented by an actual network variable in the Neuron C program. Each
network variable (or, in the case of a network variable array, each array
element) can implement no more than one profile member, and can be
associated with at most one functional block.

A Neuron C program may also implement additional network variables in
the functional block that are not in the list of optional members of the profile.
Such additional network variable members beyond the profile are called
implementation-specific members. These extra members are declared in the
member list using the implementation_specific keyword, followed by a
unique index number, and a unique name. Each network variable in a
functional profile assigns an index number and a member name to each
abstract network variable member of the profile, and the implementation-
specific member cannot use any of the index numbers or member names that
the profile has already used.

At the end of the member list there is an optional item that permits the
specification of a director function. The director function specification begins
with the director keyword, followed by the identifier that is the name of the
function, and ends with a semicolon. See the chapter on functional blocks in
the Neuron C Programmer’s Guide for more explanation and examples of
functional block members and the director function.

After the member list, the functional block declaration continues with the
name of the functional block itself. A functional block can be a single
declaration, or it can be a singly-dimensioned array.

If the fblock is implemented as an array as shown in the example below,
then each network variable that is to be referenced by that fblock must be
declared as an array of at least the same size. When implementing an
fblock array's member with an array network variable element, the starting
index of the first network variable array element in the range of array
elements must be provided in the implements statement. The Neuron C
compiler automatically adds the following network variable array elements to
the fblock array elements, distributing the elements consecutively.

EXAMPLE:

network output SNVT_lev_percent nvoValue[6];

// The following declares an array of four fblocks, which
// have members nvoValue[2]..nvoValue[5], respectively
fblock SFPTanalogInput {

nvoValue[2] implements nvoAnalog;
}

An optional external name may be provided for each functional block. The
compiler permits an external_name keyword, followed by a string in
parentheses. The string becomes part of the device interface that is exposed
to network tools. The external name is limited to 16 characters if this feature
is used. If the external_name feature is not used, nor the
external_resource_name feature described below, the functional block
identifier (supplied in the declaration) is also used as the default external
name. In this case, there is a limitation of 16 characters applying to the
functional block identifier.

The external_resource_name keyword can be used as the external name,
instead of the external_name string described above. In this case, the

Neuron C Reference Guide 6-5

device interface information will contain a scope and index pair (the first
number is a scope, then a colon character, then the second number is an
index). The scope and index pair identifies a language string in the resource
files, which a network tool can access for a language-dependent name of the
functional block. You can use the scope and index pair to reduce memory
requirements and to provide language-dependent names for your functional
blocks. Alternatively, a string argument can also be supplied to the
external_resource_name keyword. The compiler then takes this string
and uses it to look up the appropriate string in the resource files that apply to
the device. This is provided as a convenience to the programmer, so the
compiler will look up the scope and index; but the result is the same, the
scope and index pair is used in the external interface information, rather
than a string. The string must exist in an accessible resource file for the
compiler to properly perform the lookup.

6-6 Compiler Directives

Functional Block Property Lists (fb-property-list)
Finally, at the end of the functional block is a property list, similar to the
device property lists and the network variable property lists discussed in the
previous chapter. The functional block’s property list, at a minimum, must
include all of the mandatory properties defined by the functional profile that
apply to the functional block. Implementation-specific properties may be
added to the list without any special keywords. You cannot implement more
than one property of any particular SCPT or UCPT type for the same
functional block.

The functional block’s property list must only contain the mandatory and
optional properties that apply to the functional block as a whole. Properties
that apply specifically to an individual abstract network variable member of
the profile must appear in the nv-property-list of the network variable that
implements the member, rather than in the fb-property-list.

The complete syntax for a functional block’s property list is as follows:

 fb_properties { property-reference-list }

 property-reference-list :
 property-reference-list , property-reference
 property-reference

 property-reference :
 property-identifier [= initializer] [range-mod]
 property-identifier [range-mod] [= initializer]

 range-mod : range_mod_string (concatenated-string-constant)

 property-identifier : [property-modifier] identifier [constant-expression]
 [property-modifier] identifier

 property-modifier : static | global

The functional block property list begins with the fb_properties keyword. It
then contains a list of property references, separated by commas, exactly like
the device property list and the network variable property list. Each
property reference must be the name of a previously declared CP family or
the name of a previously declared configuration network variable. The rest of
the syntax is very similar to the network variable property list syntax
discussed in the previous chapter.

Following the property-identifier, there may be an optional initializer, and an
optional range-mod. These optional elements may occur in either order if
both are given. If present, the instantiation initializer for a CP family
member overrides any initializer provided at the time of declaration of the
family; thus, using this mechanism, some CP family members can be
initialized specially, with the remaining family members having a more
generic initial value. If a network variable is initialized in multiple places (in
other words, in its declaration as well as in its use in a property list), the
initializations must match.

Finally, each property instantiation may have a range modification string
following the property identifier. The range modification string works
identically to the range-mod described above in Configuration Property
Modifiers (cp-modifiers).in the previous chapter. A range modification string
provided in the instantiation of a CP family member overrides any range
modification string provided in the declaration of the CP family.

Neuron C Reference Guide 6-7

The elements of an fblock array all share the same set of configuration
properties as listed in the associated fb-property-list. Without special
keywords, each element of the fblock array will obtain its own set of
configuration properties. Special modifiers can be used to share individual
properties among members of the same fblock array (through use of the
static keyword), or among all the functional blocks on the device that have
the particular property (through use of the global keyword).

EXAMPLE:

// CP Family Declarations:
SCPTgain cp_family cpGain;
SCPTlocation cp_family cpLocation;
SCPToffset cp_family cpOffset;
SCPTmaxSndT cp_family cpMaxSendT;
SCPTminSndT cp_family cpMinSendT;

// NV Declarations:
network output SNVT_lev_percent nvoData[4]

nv_properties {
cpMaxSendT, // throttle interval
cpMinSendT // heartbeat interval

};

// four open loop sensors, implemented as two arrays of
// two sensors, each. This might be beneficial in that
// the software layout might meet the hardware design
// best, for example with regards to shared and individual
// properties.

fblock SFPTopenLoopSensor {
nvoData[0] implements nvoValue;

} MyFB1[2]
fb_properties {

cpOffset, // offset for each fblock
static cpGain, // gain shared in MyFB1
global cpLocation // location shared in both

};

fblock SFPTopenLoopSensor {
nvoData[2] implements nvoValue;

} MyFb2[2]
fb_properties {

cpOffset, // offset for each fblock
static cpGain, // gain shared in MyFB2
global cpLocation // location shared in both

};

Like network variable properties, functional block properties may be shared
between two or more functional blocks. The use of the global keyword
creates a CP family member that is shared among two or more functional
blocks. This global member is a different member than a global member that
would be shared among network variables. The use of the static keyword
creates a CP family member that is shared among all the members of a
functional block array, but not with any other functional blocks outside the
array. See the discussion of functional block properties in the Neuron C
Programmer’s Guide for more information on this topic.

6-8 Compiler Directives

Consequently, the example shown above instantiates four heartbeat
(SCPTminSndT) and four throttle (SCPTmaxSndT) CP family members (one
pair for each member of the nvoData network variable array), and four offset
CP family members (SCPToffset), one for each member of each fblock array.
It also instantiates a total of two gain control CP family members
(SCPTgain), one for MyFb1, and one for MyFb2. Finally, it instantiates a
single location CP family member (SCPTlocation), which is shared by MyFb1
and MyFb2.

Related Data Structures
Each functional block is assigned a global index (from 0 to n-1) by the
compiler. In the case of an array of functional blocks, each element is
assigned a consecutive index (but since these indices are global, they do not
necessarily start at zero).

If one or more functional blocks are declared in a Neuron C program, the
compiler creates an array of values that can be accessed from the program.
This array is named the fblock_index_map, and it has one element per
network variable in the program. The array entry is an unsigned short.
It’s declaration, in the <echelon.h> file, appears as follows:

 extern const unsigned short fblock_index_map[];

The value for each network variable is set to the global index of the
functional block that it is a member of. If the network variable is not a
member of any functional block, the value for its entry in the
fblock_index_map array is set to the value 0xFF.

Accessing Members and Properties of a
Functional Block from a Program

The network variable members and configuration property (implemented as
network variable) members of a functional block can be accessed from a
program just as any other variable can be accessed. For example, they can be
used in expressions, as function parameters, or as operands of the address
operator or the increment operator. To access a network variable member of
a functional block, or to access a network variable configuration property of a
functional block, the network variable reference can be used in the program
just as any other variable would be.

However, to use a CP family member, you must specify which family member
is being accessed, because more than one functional block could have a
member from the same CP family. The syntax for accessing a configuration
property from a functional block’s property list is as follows:

 fb-context :: property-identifier

 fb-context : identifier [index-expr]
 identifier

The particular family member is identified by a qualifier that precedes it.
This qualifier is called the context. The context is followed by two consecutive
colon characters, and then the name of the property. Since there cannot be
two or more properties with the same SCPT or UCPT type that apply to the
same functional block, this means that each property is unique within a

Neuron C Reference Guide 6-9

particular context. The context uniquely identifies the property. For
example, a functional block array, fba, with 10 elements, could be declared
with a property list referencing a CP family named xyz. There would then be
10 different members of the CP family xyz, all with the same name.
However, adding the context, such as fba[4]::xyz, or fba[j]::xyz, would
uniquely identify the CP family member.

EXAMPLE:

// Continuing from the example earlier in the chapter
// that declared MyFb1[2] and MyFb2[2] ...

void f(void)
{

z = muldiv(rawData,
MyFb1[0]::cpGain.multiplier,
MyFb1[0]::cpGain.divider);

MyFb1[0]::nvoData = z;
}

Just like for network variable properties, even though a configuration
network variable can be uniquely accessed via its variable identifier, it can
also be accessed equally well through the context expression, just like the CP
family members.

Also, the network variable members of the functional block can be accessed
through a similar syntax. The syntax for accessing a functional block
member is shown below (the fb-context syntactical element is defined above):

 fb-context :: member-identifier [[index-expr]]

Finally, the properties of the functional block’s network variable members
can also be accessed through an extension of this syntax. The syntax for
accessing a functional block’s member’s property is shown below (the fb-
context syntactical element is defined above):

 fb-context :: member-identifier [[index-expr]] :: property-identifier

Neuron C also provides some built-in properties for a functional block. The
built-in properties are shown below (the fb-context syntactical element is
defined above):

 fb-context :: global_index

 fb-context :: director (expr)

The global_index property is an unsigned short value that corresponds to
the global index assigned by the compiler. The global index is a read-only
value.

Use of the director property as shown calls the director function that
appears in the declaration of the functional block. The compiler provides the
first parameter to the actual director function automatically (the first
argument is the global index of the functional block), and the expr shown in
the syntax above becomes the director function’s second parameter.

For more information and for examples of functional blocks and accessing
their members and properties, see the chapter on functional blocks in the
Neuron C Programmer’s Guide.

7
Built-in Variables and Objects

This chapter provides reference information on the built-in
variables and built-in objects in Neuron C.

7-2 Built-in Variables and Objects

Introduction to Built-in Variables and Objects
Neuron C Version 2 provides seventeen built-in variables and four built-in
objects. The term “built-in” means that the definition is part of the Neuron C
language.

The built-in variables are:
activate_service_led
config_data
cp_modifiable_value_file
cp_modifiable_value_file_len
cp_readonly_value_file
cp_readonly_value_file_len
cp_template_file
cp_template_file_len
fblock_index_map
input_is_new
input_value
msg_tag_index
nv_array_index
nv_in_addr
nv_in_index
read_only_data
read_only_data_2

The built-in objects are:
msg_in
msg_out
resp_in
resp_out

Following are more detailed descriptions of these built-in elements.

Neuron C ReferenceGuide 7-3

Built-in Variables
activate_service_led VARIABLE
The activate_service_led variable can be assigned a value by the
application program to control the service LED status. Assign a non-zero
value to activate_service_led to turn the service LED on. Assign a zero
value to turn the service LED off. The <control.h> include file contains the
definition for the variable as follows:

extern system int activate_service_led;

This variable is located in RAM space belonging to the Neuron firmware. Its
value is not preserved after a reset.

There may be a delay of up to one second between the time that the
application program sets this variable and the time that its new value is
sensed and acted upon by the Neuron firmware. Therefore, attempts to flash
the service LED are limited to a period of at least a second.

EXAMPLE:

/* Turn on service LED */
activate_service_led = TRUE;

/* Turn off service LED */
activate_service_led = FALSE;

7-4 Built-in Variables and Objects

config_data VARIABLE
The config_data variable defines the hardware and transceiver properties of
this device. It is located in EEPROM, and parts of it belong to the application
image written during device manufacture, and to the network image written
during device installation. The type is a structure declared in <access.h> as
follows:

#define LOCATION_LEN 6
#define NUM_COMM_PARAMS 7

typedef struct { // This embedded struct starts at
// offset 0x11 when placed in outer struct

unsigned collision_detect : 1;
unsigned bit_sync_threshold : 2;
unsigned filter : 2;
unsigned hysteresis : 3;
unsigned : 6;

// offset 0x12 starts here when it is nested
// in the outer struct below

unsigned cd_tail; : 1;
unsigned cd_preamble : 1;

} direct_param_struct;

typedef struct { // This is the outer struct
unsigned long channel_id; // offset 0x00
char location[LOCATION_LEN]; // offset 0x02
unsigned comm_clock : 5; // offset 0x08
unsigned input_clock : 3;
unsigned comm_type : 3; // offset 0x09
unsigned comm_pin_dir : 5;
unsigned reserved[5]; // offset 0x0A
unsigned node_priority; // offset 0x0F
unsigned channel_priorities; // offset 0x10
union { // offset 0x11

unsigned xcvr_params[NUM_COMM_PARAMS];
direct_param_struct dir_params;

} params;
unsigned non_group_timer : 4; // offset 0x18
unsigned nm_auth : 1;
unsigned preemption_timeout : 3;

} config_data_struct;

const config_data_struct config_data;

The application program may read, but not write this structure using the
config_data global declaration. The structure is 25 bytes long, and it may
be read and written over the network using the read memory and write
memory network management messages with address_mode=2. For detailed
descriptions of the individual fields, see the Neuron Chip or Smart
Transceiver Data Book. To write this structure, use the
update_config_data() function described in Chapter 3.

Neuron C ReferenceGuide 7-5

cp_modifiable_value_file VARIABLE
The cp_modifiable_value_file variable contains the writeable value file.
This block of memory contains the values for all read/write configuration
properties declared as CP family members. It is defined as an unsigned
short array. See Chapter 5 of this Reference Guide for more information
about configuration properties.

cp_modifiable_value_file_len VARIABLE
The cp_modifiable_vlaue_file_len variable contains the length of the
cp_modifiable_value_file array. It is defined as an unsigned long. See
Chapter 5 for more information about configuration properties.

cp_readonly_value_file VARIABLE
The cp_modifiable_value_file variable contains the read-only value file.
This block of memory contains the values for all read-only configuration
properties declared as CP family members. The type is an unsigned short
array. See Chapter 5 for more information about configuration properties.

cp_readonly_value_file_len VARIABLE
The cp_readonly_value_file_len variable contains the length of the
cp_readonly_value_file array. The type is unsigned long. See Chapter 5
for more information about configuration properties.

cp_template_file VARIABLE
The cp_template_file variable contains the template file. The template file
contains a definition of all configuration properties declared as CP family
members. This is an unsigned short array. See Chapter 5 for more
information about configuration properties.

cp_template_file_len VARIABLE
The cp_template_file_len variable contains the length of the
cp_template_file array. The type is an unsigned long. See Chapter 5 of
this Reference Guide for more information about configuration properties.

fblock_index_map VARIABLE
The fblock_index_map variable contains the functional block index map.
The functional block index map provides a mapping of each network variable
(or, each network variable array element in case of an array) to the functional
block that contains it, if any. The type is an unsigned short array. The
length of the array is identical to the number of network variables (counting
each network variable array element separately) in the Neuron C program.

For each network variable, the mapping array entry corresponding to that
variable’s global index (or that element’s global index) is either set to 0xFF
by the compiler if the variable (or element) is not a member of a functional
block, or it is set to the functional block global index that contains the
network variable (or element). The functional block global indices range from

7-6 Built-in Variables and Objects

0 to n-1 consecutively, for a program containing n functional blocks. See
Chapter 7 of this Reference Guide for more information about functional
blocks.

input_is_new VARIABLE
The input_is_new variable is set to TRUE for all timer/counter input objects
whenever the io_in() call returns an updated value. The type is boolean.

input_value VARIABLE
The input value variable contains the input value for an io_changes or
io_update_occurs event. When the io_changes or io_update_occurs
event is evaluated, an implicit call to the io_in() function occurs. This call to
io_in() obtains an input value for the object, which can be accessed using the
input_value variable. The type of input_value is a signed long. For
example:

signed long switch_state;

when (io_changes(switch_in))
{

switch_state = input_value;
}

Here, the value of the network variable switch_state is set to the value of
input_value (the switch value that was read in the io_changes clause).

However, there are some I/O models, such as pulsecount, where the true
type of the input value is an unsigned long. An explicit cast should be used
to convert the value returned by input_value to an unsigned long variable
in this case.

EXAMPLE:

unsigned long last_count;
IO_7 input pulsecount count;

when (io_update_occurs(count))
{

save_count = (unsigned long)input_value;
}

Neuron C ReferenceGuide 7-7

msg_tag_index VARIABLE
The msg_tag_index variable contains the message tag for a
msg_completes, msg_succeeds, msg_fails, or resp_arrives event. When
one of these events evaluates to TRUE, msg_tag_index contains the
message tag index to which the event applies. The contents of
msg_tag_index is undefined if no input message event has been received.
The type is unsigned short.

nv_array_index VARIABLE
The nv_array_index variable contains the array index for a nv_update
occurs, nv_update_completes, nv_update_fails, nv_update_succeeds
event. When one of these events, qualified by an unindexed network variable
array name evaluates to TRUE, nv_array_index contains the index of the
element within the array to which the event applies. The contents of
nv_array_index will be undefined if no network variable array event has
occurred. The type is unsigned int.

nv_in_addr VARIABLE
The nv_in_addr variable contains the source address for a network variable
update. This value may be used to process inputs from a large number of
devices that fan-in to a single input on the monitoring device. When the
devices being monitored have the same type of output, a single input network
variable may be used on the monitory device. The connection would likely
include many output devices (the sensors) and a single input device (the
monitor). However, the monitoring device in this example must be able to
distinguish between the many sensor devices. The nv_in_addr variable can
be used to accomplish this.

When an nv_update_occurs event is TRUE, the nv_in_addr variable is set
to contain the LONWORKS addressing information of the sending device. The
type is a structure predefined in the Neuron C language as follows:

typedef struct {
unsigned domain : 1;
unsigned flex_domain : 1;
unsigned format : 6;
struct {

unsigned subnet;
unsigned : 1;
unsigned node : 7;

} src_addr
struct {

unsigned group;
} dest_addr;

} nv_in_addr_t;

const nv_in_addr_t nv_in_addr;

The following is a detailed explanation of the various fields of the network
variable input address structure:

domain Domain index of the network variable update.

flex_domain Always 0 for network variable updates.

7-8 Built-in Variables and Objects

format Addressing format used by the network variable
update. Contains one of the following values:

 0 Broadcast
1 Group
2 Subnet/Node
3 Neuron ID
4 Turnaround

src_addr Source address of the network variable update. The
subnet and node fields in the src_addr are both zero
(0) for a turnaround network variable.

dest_addr Destination address of the network variable update if
group addressing is used as specified by the format
field.

When the nv_in_addr variable is used in an application, its value will
correspond to the last input network variable updated in the application.
The contents of nv_in_addr will be undefined if no network variable update
event has occurred. Updates occur when network variable events are
checked or when post_events() is called (either explicitly from the program
or by the scheduler between tasks) and events arrive for network variables
for which there is no corresponding event check.

See Monitoring Network Variables in Chapter 3 of the Neuron C
Programmer's Guide for more description of how nv_in_addr is used.

Use of nv_in_addr enables explicit addressing for the application, and
affects the required size for input and output application buffers. See
Chapter 8 of the Neuron C Programmer's Guide for more information about
allocating buffers.

nv_in_index VARIABLE
The nv_in_index variable contains the network variable global index for a
nv_update_completes, nv_update_fails, nv_update_succeeds, or
nv_update_occurs event. When one of these events evaluates to TRUE,
nv_in_index contains the network variable global index to which the event
applies. The contents of nv_in_index will be undefined if no network
variable events have occurred. Updates occur when one of the above events
are checked or when post_events() is called (either explicitly from the
program or by the scheduler between tasks) and events arrive for network
variables for which there is no corresponding event. The global index of a
network variable is set during compilation and depends on the order of
declaration of the network variables in the program. The type is unsigned
short.

Neuron C ReferenceGuide 7-9

read_only_data VARIABLE
read_only_data2 VARIABLE
The read_only_data and read_only_data2 variables contain the read-only
data stored in the Neuron Chip or Smart Transceiver on-chip EEPROM, at
location 0xF000. The secondary part (read_only_data_2) is immediately
following, but only exists on Neuron Chips or Smart Transceivers with
version 6 firmware or later. This data defines the Neuron identification, as
well as some of the application image parameters. The types are structures,
declared in <access.h> as follows:

#define NEURON_ID_LEN 6
#define ID_STR_LEN 8

typedef struct {
unsigned neuron_id[NEURON_ID_LEN];
unsigned model_num;
unsigned : 4;
unsigned minor_model_num : 4;
const nv_fixed_struct * nv_fixed;
unsigned read_write_protect : 1;
unsigned : 1;
unsigned nv_count : 6;
const snvt_struct * snvt;
unsigned id_string[ID_STR_LEN];
unsigned nv_processing_off : 1;
unsigned two_domains : 1;
unsigned explicit_addr : 1;
unsigned : 0;
unsigned address_count : 4;
unsigned : 0;
unsigned : 4;
unsigned receive_trans_count : 4;
unsigned app_buf_out_size : 4;
unsigned app_buf_in_size : 4;
unsigned net_buf_out_size : 4;
unsigned net_buf_in_size : 4;
unsigned net_buf_out_priority_count : 4;
unsigned app_buf_out_priority_count : 4;
unsigned app_buf_out_count : 4;
unsigned app_buf_in_count : 4;
unsigned net_buf_out_count : 4;
unsigned net_buf_in_count : 4;
unsigned reserved1 [6]
unsigned : 6;
unsigned tx_by_address : 1;
unsigned idempotent_duplicate : 1;

} read_only_data_struct;

const read_only_data_struct read_only_data;

typedef struct {
unsigned : 2;
unsigned alias_count : 6;
unsigned msg_tag_count : 4;
unsigned : 4;
int reserved2 [3];

} read_only_data_struct_2;

7-10 Built-in Variables and Objects

const read_only_data_struct_2 read_only_data_2;

The application program may read, but not write these structures, using
read_only_data and read_only_data_2. The first structure is 36 bytes
long, and it may be read and mostly written (except for the first eight bytes)
over the network using the read memory and write memory network
management messages with address_mode=1. The second structure is 5
bytes long. The structures are written during the process of downloading a
new application image into the device. For more information about the
individual fields of the read-only data structures, see the Neuron Chip or
Smart Transceiver Data Book.

Built-in Objects
msg_in OBJECT
The msg_in object contains an incoming application or foreign-frame
message. The type is a structure predefined in Neuron C as follows:

typedef enum {ACKD, UNACKD_RPT,
UNACKD, REQUEST} service_type;

struct {
int code; // message code
int len; // length of message data
int data[MAXDATA]; // message data
boolean authenticated; // TRUE if

authenticated
// msg has passed challenge

service_type service; // service type
msg_in_addr addr; // see <msg_addr.h> include file
boolean duplicate; // message is a dup request
unsigned rcvtx; // the index into the receive

// transaction database for this message ID
} msg_in;

See the Format of an Incoming Message section in Chapter 6 of the Neuron C
Programmer's Guide for a more detailed description of this structure.

msg_out OBJECT
The msg_out object contains an outgoing application or foreign frame
message. The type is a structure predefined in the Neuron C as follows:

Neuron C ReferenceGuide 7-11

typedef enum {FALSE, TRUE} boolean;
typedef enum {ACKD, UNACKD_RPT,

UNACKD, REQUEST} service_type;

struct
{

boolean priority_on; // TRUE if a priority
message

//(default: FALSE)
msg_tag tag; // message tag (required)
int code; // message code (required)
int data[MAXDATA]; // message data

//(default: none)
boolean authenticated; // TRUE if to be

// authenticated (default: FALSE)
service_type service; // service type

// (default: ACKD)
msg_out_addr dest_addr; // (optional) see include

// file <msg_addr.h>
(optional)
} msg_out;

See the msg_out Object Definition section in Chapter 6 of the Neuron C
Programmer's Guide for a more detailed description of this structure.

resp_in OBJECT
The resp_in object contains an incoming response to a request message. The
type is a structure predefined in Neuron C as follows:

struct
{

int code; // message code
int len; // length of message data
int data[MAXDATA]; // message data
resp_in_addr addr; // (optional) see <msg

addr.h>
// (optional)

} resp_in;

See the Receiving a Response section in Chapter 6 of the Neuron C
Programmer's Guide for a more detailed description of this structure.

resp_out OBJECT
The resp_out object contains an outgoing response message to be sent in
response to an incoming request message. The response message inherits its
priority and authentication designation from the request it is replying to.
Because the response is returned to the origin of the request, no message tag
is necessary. The type is a structure predefined in Neuron C as follows:

struct
{

int code; // message code
int data[MAXDATA]; // message data

} resp_out;

See the Constructing a Response section in Chapter 6 of the Neuron C
Programmer's Guide for a more detailed description of this structure.

8
I/O Objects

This chapter provides reference information for the Neuron C
I/O objects.

8-2 I/O Objects

I/O Objects Syntax
The syntax for specific I/O object types is described in the following sections.
Option keywords such as clockedge, baud, numbits, select, and clock
may appear in any order. Each description also lists the data type of
return_value for io_in() and output_value for io_out().

 I/O Object Type

 • Bit Input/Output
• Bitshift Input/Output
• Byte Input/Output
• Dualslope Input
• Edgedivide Output
• Edgelog Input
• Frequency Output
• I2C Input/Output
• Infrared Input
• Leveldetect Input
• Magcard Input
• Magtrack1 Input
• Muxbus Input/Output
• Neurowire Input/Output
• Nibble Input/Output
• Oneshot Output
• Ontime Input
• Parallel Input/Output
• Period Input
• Pulsecount Input
• Pulsecount Output
• Pulsewidth Output
• Quadrature Input
• Serial Input/Output
• Totalcount Input
• Touch Input/Output
• Triac Output
• Triggeredcount Output
• Wiegand Input

See the Neuron Chip and Smart Transceiver Data Book for more information.

Bit Input/Output DIRECT I/O OBJECT
This I/O object type is used to read or control the logical state of a single pin,
where 0 equals low and 1 equals high. For bit input, the data type of the
return value for io_in() is an unsigned short. For bit output, the output
value is treated as a boolean, so any non-zero value is treated as a 1. If you
wish to enable the Neuron Chip or Smart Transceiver's built-in pull-up
resistors, you should add the statement #pragma enable_io_pullups to the
Neuron C program (see the Compiler Directives section in Chapter 1 of the
Neuron C Programmer's Guide for more details).

Syntax
pin input bit io-object-name;

Neuron C Reference Guide 8-3

pin output bit io-object-name [=initial-output-level];

pin specifies one of the eleven I/O pins, IO_0 through
IO_10. Bit input/output can be used on any pin.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

initial-output-level is a constant expression, in ANSI C format for
initializers, used to set the state of the output pin of
the I/O object at initialization. The initial state can be
0 or 1. The
default is 0.

Usage
unsigned int input-value;
unsigned int output-value;

input-value = io_in(io-object-name);
io_out(io-object-name, output-value);

Bit Input Example
IO_1 input bit io_switch_1; // declares pin 1 as a bit
named

// io_switch_1
unsigned int switch_on_off;
...
when (reset)
{

io_change_init(io_switch_1);
}
when (io_changes(io_switch_1))
{

switch_on_off = input_value;
}

Bit Output Example
IO_2 output bit io_LED;
unsigned int led_on_off;
...
when(...)
{

io_out(io_LED, led_on_off);
}

Bitshift Input/Output DIRECT I/O OBJECT
This I/O object type is used to shift a data word of up to 16 bits into or out of
the Neuron Chip or Smart Transceiver. Data is clocked in and out by an
internally generated clock. For bitshift input/output, the data type of the
return value for io_in(), and the data type of the output value for io_out(),
is an unsigned long.

When using multiple serial I/O devices which have differing baud rates, the
following pragma must be used:

8-4 I/O Objects

 #pragma enable_multiple_baud

This pragma must appear prior to the use of any I/O function (e.g. io_in(),
io_out()).

Syntax
pin input bitshift [numbits (const-expr)] [clockedge (+|-)] [kbaud
(const-expr)]
 io-object-name;

pin output bitshift [numbits (const-expr)] [clockedge (+|-)] [kbaud
(const-expr)]
 io-object-name [=initial-output-level];

pin an I/O pin. Bitshift input/output requires adjacent
pins. The Clock pin is the pin specified, and the Data
pin is the following pin. The pin specification denotes
the lower-numbered pin of the pair and can be IO_0
through IO_6, IO_8, or IO_9.

numbits (const-expr) specifies the number of bits to be shifted in or out.
The expression const-expr can evaluate to any number
from 1 to 31. The default is 16. Data is shifted in and
out with the most significant bit of numbits first. For
io_in(), only the last 16 bits shifted in will be
returned. For io_out(), after 16 bits, zeros are
shifted out. The number of bits to be shifted can also
be specified in the io_in() or io_out() call (for
detailed description of these two calls, see chapter 3).
This temporarily overrides the number specified in the
device declaration, for that one call only.

clockedge (+|-) For inputs, this option specifies whether the data is
read on the positive-going or negative-going edge of
the clock. For outputs, it specifies whether the data is
stable on the positive-going or negative-going edge of
the clock. The default value is [+].

kbaud (const-expr) specifies the bit rate. The expression const-expr can
be 1, 10, or 15. The default is 15kbps with a 10MHz
input clock. The bit rate scales proportionally to the
input clock.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

initial-output-level is a constant expression, in ANSI C format for
initializers, used to set the state of the clock pin at
initialization. The initial state can be 0 or 1; this
applies to the Clock pin only. The default is 0.

Neuron C Reference Guide 8-5

Usage
unsigned long input-value;

unsigned long output-value;

input-value = io_in(input-object [, numbits]);
io_out(output-object, output-value[, numbits]);

Bitshift Input Example
IO_6 input bitshift numbits(8)
io_shiftreg_keyboard;
unsigned long keyed_in_data;
...
when (...)
{

keyed_in_data =
io_in(io_shiftreg_keyboard);
}

Bitshift Output Example
IO_8 output bitshift numbits(5)
clockedge(+) io_adc_1_2_control;
...
when (...)
{

io_out(io_adc_1_2_control,
0b10010UL);
}

IO_9 Data

IO_8 Clock

10 usec
set up time

Figure 8.1 Bitshift Output

8-6 I/O Objects

Byte Input/Output DIRECT I/O OBJECT
This I/O object type is used to read or control eight pins simultaneously. For
byte input/output, the data type of the return value for io_in(), and the data
type of the output value for io_out(), is an unsigned short.

Syntax
IO_0 input byte io-object-name;

IO_0 output byte io-object-name [=initial-output-level];

IO_0 specifies pin IO_0 as the least significant bit of the
byte. Byte input/output uses pins IO_0 through IO_7.
The pin specification denotes the lowest numbered pin
of the set and must be IO_0.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

initial-output-level is a constant expression, in ANSI C format for
initializers, used to set the state of the output pin of
the I/O object at initialization. The initial state can be
from 0 to 255. The default is 0.

Usage
unsigned int input-value;

unsigned int output-value;

input-value = io_in(io-object-name);

io_out(io-object-name, output-value);

Byte Input Example
IO_0 input byte io_keyboard;
unsigned int character;
...
when (reset)
{

io_change_init(io_keyboard);
}

when (io_changes(io_keyboard))
{

character = input_value;
}

Neuron C Reference Guide 8-7

Byte Output Example
IO_0 output byte io_LED_display;
...
when (...)
{

io_out(io_LED_display, ‘?’);
}

Dualslope Input TIMER/COUNTER I/O OBJECT
This I/O object type is used to control a timer/counter output pin based on a
control_value argument and the state of a timer/counter input pin. In this
configuration, the Neuron Chip or Smart Transceiver controls and measures
the integration periods of a dual-slope integrating A/D converter. When
combined with external analog circuitry, the Neuron Chip or Smart
Transceiver performs A/D measurements with 16 bits of resolution for as
little as a 3.278ms integration period with a 40MHz input clock (the period
scales with the input clock). Faster conversion rates are attainable at the
expense of bit resolution. The duration of the first integration period is a
function of control_value and the selected clock value:

duration (ns) = control_value * 2000 * 2^(clock) / input_clock (MHz)

The value read back by this device reflects the length of the second
integration period, and is also in units of the selected clock value:

2nd_integration (ns) = input_value * 2000 * 2^(clock) / input_clock (MHz)

A single timer/counter provides the control out signal and senses a
comparator output signal. The control output signal controls an external
analog multiplexer that switches between the unknown input voltage and a
voltage reference. The timer/counter's input pin is driven by an external
comparator that compares an integrator output with a voltage reference.

For dualslope input, the data type of control_value for the io_in_request()
function is an unsigned long. The return value of the io_in() function is an
unsigned long. Both the return value for io_in() and the value stored at
input_value is a number biased negatively by the control_value used for
the io_in_request() function, and may be corrected by adding the
control_value value into it.

For additional information regarding dualslope A/D conversion and the
Neuron Chip, see the Analog to Digital Conversion with the Neuron Chip
engineering bulletin (part no. 005-0019-02).

Neuron C Resources
The following functions and events are provided for use with the dualslope
input object:

io_in_request() this function starts the first step of the integration
process. The control_value argument controls the
length of the first integration period.

io_update_occurs this event signals the end of the entire conversion
process. The value at input_value now contains the
new measurement data.

8-8 I/O Objects

Syntax
pin [input] dualslope [mux | ded] [invert] [clock (const-expr)] io-object-
name;

pin an I/O pin. Dualslope input can specify pins IO_4
through IO_7.

mux | ded specifies whether the I/O object is assigned to the
multiplexed or dedicated timer/counter. This field
only applies, and must be used, when pin IO_4 is the
input pin. The mux keyword assigns the I/O object to
the multiplexed timer/counter. The ded keyword
assigns the I/O object to the dedicated timer/counter.
When the dedicated timer/counter is used the control
output pin will be IO_1. When the multiplexed
timer/counter is used the control output pin will be
IO_0. The multiplexed timer/counter is always used
for pins IO_5 through IO_7.

invert reverses the logical value of the input pin. Use this
keyword if the comparator output is high when the
converter is in the idle state.

clock (const-expr) specifies a clock in the range 0 to 7, where 0 is the
fastest clock and 7 is the slowest clock. The default
clock for period input is clock 0. The io_set_clock()
function can be used to change the clock. The clock
values are as follows for a Neuron input clock of
10MHz (the values scale with the input clock):

Clock Range and Resolution of Period

0 (default) 0 to 13.11ms in steps of 200 ns (0-
65535)

1 0 to 26.21ms in steps of 400 ns

2 0 to 52.42ms in steps of 800 ns

3 0 to 104.86ms in steps of 1.6 µs

4 0 to 209.71ms in steps of 3.2 µs

5 0 to 419.42ms in steps of 6.4 µs

6 0 to 838.85ms in steps of 12.8 µs

7 0 to 1.677s in steps of 25.6 µs

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Neuron C Reference Guide 8-9

Usage
unsigned long input-value, control-value;

io_in_request(io-object-name, control-value);

input-value = io_in(io-object-name);

Example
IO_4 input dualslope ded clock(0) io_dsad_1;
mtimer repeating go_time;
unsigned long raw_ds;
. . .
when (reset)
{

go_time = 500; // Perform a measurement every 500ms
}

when (timer_expires(go_time))
{

// Start the first integration period (9ms at 10MHz).
io_in_request(io_dsad_1, 45000UL);

}

when (io_update_occurs(io_dsad_1))
{

// The value at input_value is biased by the negative value
// of the control value used. Correct this by adding it

back.
raw_ds = input_value + 45000UL;

}

Edgedivide Output DIRECT I/O OBJECT
This I/O object type is used to control an output pin by toggling its logic state
every output_value negative edges on an input pin. This results in a divide-
by-n*2 counter where n is the value defined by the output_value argument.

For edgedivide output, the data type of the output value for io_out() is an
unsigned long. Following reset of the Neuron Chip or Smart Transceiver,
the divider will be disabled until the first call to io_out() is executed. The
first call to io_out() for the edgedivide output object will set the output pin
to a level '1' and start the divider. Once the divider is running the function
call to io_out() only sets the value used for the divider and does not affect
the state of the output pin. The exception to this is when the output value is
0, in which case the output signal is forced to a low state and the divider is
halted.

Syntax
pin [output] edgedivide sync (pin-nbr) [invert] io-object-name
 [=initial-output-level];

pin an I/O pin. Edgedivide output can specify pins IO_0
or IO_1. If IO_0 is specified, the multiplexed

8-10 I/O Objects

timer/counter is used and the sync pin can be IO_4
through IO_7. If IO_1 is specified, the dedicated
timer/counter is used and the sync pin must be IO_4.

sync (pin-nbr) specifies the sync pin, which is the counting input
signal. By default, the divider counts negative edges.

invert causes positive edges at the sync pin input to be
counted instead of the default negative edges.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

initial-output-level is a constant expression, in ANSI C format for
initializers, used to set the state of the output pin of
the I/O object at initialization. The initial state can be
0 or 1. The
default is 0.

Usage
unsigned long output-value;

io_out(io-object-name, output-value);

Example
IO_0 output edgedivide sync(IO_4) io_divider;
. . .
when (reset)
{

// There is a 60Hz signal at pin IO_4. Set up the
divider

// to produce a change on pin IO_0 once a minute.
io_out(io_divider, 3600UL);

}

Edgelog Input TIMER/COUNTER I/O OBJECT
This I/O object type is used to measure a series of both high and low input
signal periods on a single input pin, IO_4, in units of the clock period:

time_on/time_off (ns) = value_stored * 2000 * 2^(clock) / input_clock (MHz)

Edgelog input can be used to capture complex waveforms such as infrared
command input (see also the Infrared I/O Object). For edgelog input, the
io_in() function requires a pointer to a data buffer, into which the series of
unsigned long values are stored, and a count argument, which controls the
number of values to be stored. The values stored represent the units of clock
period between input signal edges, rising or falling. The io_in() function
returns an unsigned short int that contains the actual number of edge-to-
edge periods stored. No input events are associated with the edgelog input
object.

During the io_in() function call, the measurement process stops whenever
the maximum period is exceeded. In this case, the value returned will not be
equal to the count argument passed.

If a preload value is specified, it must be added to the value returned by
io_in(). The resulting addition may cause an overflow, but this is normal.

Neuron C Reference Guide 8-11

This I/O object uses both of the Neuron timer/counters.

Neuron C Resources
The following function is provided specifically for use with the edgelog I/O
object:

io_edgelog_preload() This function is used to change the maximum
value for each period measurement. The
maximum value may range from 1 to 65,535; the
default value is 65,535.

For example, for a 10MHz input clock: an edgelog input object using clock (3)
and the default maximum period would yield a 1.6µs resolution and would
not overflow until 104.86ms had elapsed. Using a value of 7500 for
io_edgelog_preload() would result in the io_in() function call terminating
if 12ms had elapsed with no input edges.

Syntax
IO_4 [input] edgelog [clock (const-expr)] io-object-name;

IO_4 specifies pin IO_4. This is the input pin for the
edgelog input object.

clock(const-expr) specifies a clock rate in the range 0 to 7, where 0 is the
fastest and 7 is the slowest. The default clock rate for
edgelog input is 2. The io_set_clock() function can
be used to change the clock. The clock values are as
follows for a Neuron input clock of 10MHz (the values
scale with the input clock):

Clock Input Range and Resolution

0 0 to 13.11ms in steps of 200 ns (0-65535)

1 0 to 26.21ms in steps of 400 ns

2 (default) 0 to 52.42ms in steps of 800 ns

3 0 to 104.86ms in steps of 1.6 µs

4 0 to 209.71ms in steps of 3.2 µs

5 0 to 419.42ms in steps of 6.4 µs

6 0 to 838.85ms in steps of 12.8 µs

7 0 to 1.677sec in steps of 25.6 µs

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

In figure 8.2, an io_in() function call is executed sometime after the IO_4
input signal is sensed as changing to '1', but before it has changed back to '0'.
The first period, Period [1], is stored as a value in the array pointed to by the
buffer argument. If the io_in() function call occurs within the Period [2]
time frame, the data for Period [1] is lost.

8-12 I/O Objects

Individual period measurements may be skipped if the sum of two
consecutive periods is less than 104µs (10MHz input clock), regardless of the
timer/counter clock setting. The minimum value scales with the input clock.

IO_4 Input

call to io_in(device, buffer, count)

Period [1] [2] [3] [4] [5]

0

1

Figure 8.2 io_in() Function Call

If the IO_4 input pin has been at a constant level for longer than the overflow
period before the call to io_in() is made, the first value stored in the buffer is
not the maximum value, but rather the value for the next period.

Usage
unsigned int count;

unsigned long input-buffer[buffer-size];

count = io_in(io-object-name, input-buffer, count);

Example
IO_4 input edgelog clock(7) io_time_stream;

// The next object allows direct reading of time_stream
level.
IO_4 input bit io_time_stream_level;

unsigned int edges;
unsigned long in_buffer[20];
unsigned long pre_load = 0x4000;

when (reset)
{

io_edgelog_preload(pre_load);
}

when (io_changes(io_time_stream_level) to 1)
{

int i;
// Retrieve edge log
edges = io_in(io_time_stream, in_buffer, 20);
// Correct for preload offset
for (i = 0; i < edges; i++)

in_buffer[i] += pre_load;
// Process data
...

}

Neuron C Reference Guide 8-13

Frequency Output TIMER/COUNTER I/O OBJECT
This I/O object type produces a repeating square wave output signal whose
period is a function of output_value and the selected clock value:

period (ns) = output_value * 4000 * 2^(clock)/ input_clock (MHz)

For frequency output, the data type of output_value for io_out() is an
unsigned long. An output_value of 0 forces the output signal to a low
state (unless the invert keyword is used in the declaration; see below).

Syntax
pin [output] frequency [invert] [clock (const-expr)] io-object-name
 [=initial-output-level];

pin specifies either pin IO_0 (using the multiplexed
timer/counter) or IO_1 (using the dedicated
timer/counter).

invert normally has no effect other than inverting the output
for an output value of 0. The default output for 0 is
low.

clock (const-expr) specifies a clock in the range 0 to 7, where 0 is the
fastest clock and 7 is the slowest clock. The default
clock for frequency output is clock 0. The
io_set_clock() function can be used to change the clock
at run-time. The clock values are as follows for an
input clock of 10MHz:

Clock Period Range

0 (default) 0 to 26.21ms in steps of 400 ns (0-65535)
1 0 to 52.42ms in steps of 800 ns
2 0 to 104.86ms in steps of 1.6 µs
3 0 to 209.71ms in steps of 3.2 µs
4 0 to 419.42ms in steps of 6.4 µs
5 0 to 838.85ms in steps of 12.8 µs
6 0 to 1.677sec in steps of 25.6 µs
7 0 to 3.355sec in steps of 51.2 µs

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

initial-output-level is a constant expression, in ANSI C format for
initializers, used to set the state of the output pin of
the I/O object at initialization. The initial state is
limited to 0 or 1. The default is 0.

8-14 I/O Objects

Usage
unsigned long output-value;

io_out(io-object-name, output-value);

Example
IO_1 output frequency clock(3) io_alarm;
...
when (...)
{

io_out(io_alarm, 100); // outputs 3.125kHz signal at
clock(3)
}

when (...)
{

io_out(io_alarm, 50); // outputs 6.25kHz signal at
clock(3)
}

when (...)
{

io_out(io_alarm, 0); // output signal is stopped
}

I2C Input/Output SERIAL I/O OBJECT
This I/O object type is used to interface to the Philips Semiconductor's Inter-
Integrated Circuit (I2C) bus. See the patent notice on the inside front cover
of this manual before using this I/O object. Also see the Neurowire I/O object
for an alternate form of serial I/O. Pin IO_8 is the serial clock line (SCL), and
pin IO_9 is the serial data line (SDA). The Neuron Chip or Smart
Transceiver acts as a master only. Two external pullups are required, and
the interface is connected directly to the I/O pins. These I/O pins are
operated as "open-drain" devices in order to support the interface.

For all transfers an I2C device address argument is required. This byte
should be the right-justified 7 bit I2C device address. Up to 255 bytes of data
may be transferred at a time. The address is emitted onto the bus at the
start of any transfer, just following the I2C bus 'start condition'. A count
argument is also required; this controls how many data bytes are to be
written or read.

For I2C input/output, io_in() and io_out() return a 0 or 1 value reflecting
the fail (0) or pass (1) status of the transfer. A failed status indicates that the
addressed device did not acknowledge positively on the bus, or that the SCL
was low at the start of the transfer.

For more information on this protocol and the devices that it supports, see
any documentation on Philips Semiconductors Microcontroller Products,
under I2C bus descriptions.

Neuron C Reference Guide 8-15

Syntax
IO_8 i2c io-object-name;

IO_8 specifies pin IO_8. I2C requires pins IO_8 and IO_9.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Usage
boolean return-value;
unsigned int data-buffer[buffer-size];
unsigned int device-address;
unsigned int count;
return-value = io_in(io-object-name, data-buffer, device-address, count);
return-value = io_out(io-object-name, data-buffer, device-address, count);

Example
#define AD_ADDR 0x48 // address of the A/D
converter
IO_8 i2c io_i2c_bus;
unsigned int adbuff[5];
unsigned int ad_cntrl;
boolean retval;
. . .
when (...)
{

// Read the A/D converter. First, write a control word
byte.

ad_cntrl = 0x04;
retval = io_out(io_i2c_bus, &ad_cntrl, AD_ADDR, 1);

// Next, perform a 5-byte read of the A/D converter.
retval = io_in(io_i2c_bus, adbuff, AD_ADDR, 5);

}

8-16 I/O Objects

Infrared Input TIMER/COUNTER I/O OBJECT
This I/O object type is used to capture a data stream generated by a class of
infrared remote control devices. This class of devices generates a stream of
ones and zeros by modulating an infrared emitter for an on and off cycle, each
cycle representing either a one or a zero. The period of this on/off cycle
determines the data bit value, a longer cycle implies a one, a shorter cycle
implies a zero.

Typically, the infrared on signal consists of an infrared source modulated at a
carrier frequency between 38kHz and 42kHz. An infrared
receiver/demodulator is used external to the Neuron Chip or Smart
Transceiver to produce a digital sequence with the carrier removed. Upon
execution of the io_in() function for the infrared I/O object, the Neuron Chip
or Smart Transceiver measures the cycle times and stores the data bits into a
buffer passed to the io_in() function.

A timer/counter is used to make the series of cycle time measurements. The
resolution of these measurements is in units of the clock period:

period (ns) = measured_value * 2000 * 2^(clock) / input_clock (MHz)

For infrared input, the io_in() function requires, in addition to the
io_object_name, four arguments: A pointer to a data buffer in which the
series of data bits are stored; a bit_count argument, which is the expected
number of data bits to be received and stored; a max_period argument
limiting the range of the timer/counter measurement process; and a threshold
argument, representing the half way point, in timer/counter count clocks,
between a zero data period and a one data period.

The value returned by the io_in() function is the actual number of bits read.
If less than the expected number of bits (controlled by bit_count) appear at
the input pin, the io_in() function waits for the max_period period before
returning. If the expected number of bits, or more, appear at the input pin,
the io_in() function waits for silence at the input pin before returning.
Silence is defined as a lack of input cycles for the max_period period. If
input cycles persist, the function returns after 256 input cycles occur. This
data may be retrieved using the function tst_bit().

The max_period argument is an unsigned long, and is passed as the
negative (two's complement) of the required value. The threshold argument
is passed as the max_period value plus the required threshold value. See
the example below. The edgelog input object type can be used to read inputs
from infrared devices that do not conform to the assumptions of the infrared
input object type.

Neuron C Reference Guide 8-17

Syntax
pin [input] infrared [mux | ded] [invert] [clock (const-expr)] io-object-
name;

pin an I/O pin. Infrared input can specify pins IO_4
through IO_7.

mux | ded specifies whether the I/O object is assigned to the
multiplexed or dedicated timer/counter. This field
only applies, and must be used, when pin IO_4 is the
input pin. The mux keyword assigns the I/O object to
the multiplexed timer/counter. The ded keyword
assigns the I/O object to the dedicated timer/counter.
The multiplexed timer/counter is always used on pins
IO_5 and IO_7.

invert causes the measurement of the cycle period between
positive input edges rather than the default, which is
between negative input edges.

clock (const-expr) specifies a clock in the range 0 to 7, where 0 is the
fastest clock and 7 is the slowest clock. The default
clock for period input is clock 6. The io_set_clock()
function can be used to change the clock. The clock
values are as follows for a Neuron Chip input clock of
10MHz (the values scale with the input clock):

Clock Range and Resolution of Period

0 (default) 0 to 13.11ms in steps of 200 ns (0-65535)

1 0 to 26.21ms in steps of 400 ns

2 0 to 52.42ms in steps of 800 ns

3 0 to 104.86ms in steps of 1.6 µs

4 0 to 209.71ms in steps of 3.2 µs

5 0 to 419.42ms in steps of 6.4 µs

6 0 to 838.85ms in steps of 12.8 µs

7 0 to 1.677s in steps of 25.6 µs

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

8-18 I/O Objects

Usage
unsigned int count;
unsigned int input-buffer[buffer-size];
unsigned long max-period, threshold;

count = io_in(io-object-name, input-buffer, count, max-period, threshold);

Example
This example works with the NEC µPD1913 encoder chip. This encoder
produces a start bit cycle before the actual data stream. During the start bit
cycle, the input signal is driven low. This start condition is typical of infrared
encoders as it allows a receiver/demodulator's AGC circuit time to adjust. It
also gives the Neuron Chip or Smart Transceiver some time to catch this
condition from the scheduler, and enter the io_in() function. After the start
cycle, 32 bits of encoded data appear.

The start cycle is 13ms. The zero cycle is 1.12ms, and the one cycle is 2.24ms.
The input clock is 10MHz, and the timer/counter clock is clock (7). This
yields a 25.6µs timer/counter clock resolution.

The max_period parameter is set to cause an overflow at 110% of the start
cycle (the timer/counter will count up from this value):
 65,536 - ((1.10 * 13.0e-3) / 25.6e-6)
 or 64,977.
Given the one and zero data periods, the threshold value is:
 64,977 + (((1.12e-3 + 2.24e-3) / 2) / 25.6e-6)
 or 64,977 + 66

This encoder always sends 32 bits, so the count will be 32, and the returned
input_buffer will be an array of 4 bytes.

// This is the demodulated IR input. Use the non-inverted mode
to
// read falling to falling input periods.
IO_4 input infrared ded clock (7) io_ir_data;

// This object allows the application to monitor the input signal
// before entering the io_in(ir_data) function.
IO_4 input bit io_ir_data_level;

unsigned int bits_read;
unsigned int irb[4];
. . .
when (io_changes(io_ir_data_level) to 0)
{

bits_read = io_in(io_ir_data, irb, 32,
64977UL, 64977UL + 66UL);

if (bits_read == 32) {
// So far, a valid data message.
. . .

}
}

Neuron C Reference Guide 8-19

Leveldetect Input DIRECT I/O OBJECT
This I/O object type is used to detect a level of logical 0 on a single pin. The
state of the input is latched in hardware every 200nsec with a 10MHz input
clock (the interval scales at lower input clock speeds), capturing any 0 level
input. This event is represented by a 1 value, and is cleared to 0 when read.
As long as the input pin level stays at logical zero (0), each io_in() call will
return a 1 value.

The leveldetect input object is useful for capturing events of short duration
that would otherwise be missed by the bit input object. For leveldetect input,
the data type of return_value for io_in() is an unsigned short. If you
wish to enable the Neuron Chip's or Smart Transceiver's built-in pull-up
resistors, you should add the statement #pragma enable_io_pullups to the
Neuron C program (see the Compiler Directives section in Chapter 1 of the
Neuron C Reference Guide for more details).

Syntax
pin [input] leveldetect io-object-name;

pin an I/O pin. Leveldetect input can specify one of the
pins IO_0 through IO_7.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Usage
unsigned int input-value;

input-value = io_in(io-object-name);

Example
IO_6 input leveldetect io_edge_trigger;

when (io_changes(io_edge_trigger)to 1)
{

... // this task will run at each transition to
// logical 0 level at pin 6

}

Magcard Input SERIAL I/O OBJECT
This I/O object type is used to transfer synchronous serial data from an ISO
7811 track 2 magnetic stripe card reader. See the MagTrack1 I/O object for
track 1 compatible input. The magcard input object reads track 2 in the
forward direction only. The data is presented as a data signal input on pin
IO_9, and a clock, or data strobe, signal input on pin IO_8. The data on pin
IO_9 is clocked on or just following the falling edge of the clock signal on
IO_8, with the least significant bit first.

Data is recognized as a series of 4-bit characters plus an odd parity bit per
character. This process begins when the start sentinel (hex B) is recognized,
and continues until the end sentinel (hex F) is recognized. No more than 40

8-20 I/O Objects

characters, including the two sentinels, will be read. The data is stored as
packed BCD digits in the buffer space pointed to by the buffer pointer
argument to the io_in() function with the parity bit stripped, and includes
the start and end sentinel characters. This buffer should be 20 bytes long.
The data is stored with the first character in the most significant nibble of
the first byte in the buffer.

For magcard input, the io_in() function requires a pointer to a data buffer,
into which the series of BCD pairs are stored. The io_in() function returns a
signed int that contains the actual number of characters stored.

The parity of each character is checked. The longitudinal redundancy check
(LRC) character, which appears just after the end sentinel, is also checked. If
either of these tests fail, if more than 40 characters are being clocked in, or if
the process aborts due to an input pin event (see below), the io_in() function
will return the value (-1). The LRC character is not stored.

The magcard object will also use one of I/O pins IO_0 through IO_7 as a
timeout/abort pin. Use of this feature is suggested since the io_in() function
will update the watchdog timer during clock wait states, and could result in a
lockup if the card were to stop moving in the middle of the transfer process.
If a '1' level is detected on the I/O timeout pin, the io_in() function will
abort. This input can be a one-shot timer counter output, an RC circuit, or a
~Data_valid signal from the card reader.

A Neuron Chip or Smart Transceiver with a 10MHz input clock rate can
process a bit rate of up to 8334bps (at a bit density of 75 bits per inch this is a
card speed of 111 inches per second). Most magnetic card stripes contain a 15
bit sequence of zero data at the start of the card, allowing time for the
application to start the card reading function. At 8334bps, this period is
about 1.8ms. If the scheduler latency is greater than the 1.8ms value, for
example, due to application processing in another when task, the io_in()
function will miss the front end of the data stream.

Syntax
IO_8 [input] magcard timeout (pin-nbr) [clockedge (+|-)] [invert]
 io-object-name;

IO_8 specifies pin IO_8. Magcard input requires both pins
IO_8 and IO_9. Pin IO_8 is the negative-going clock,
IO_9 is the serial data input.

timeout(pin-nbr) specifies the timeout signal pin, in the range of IO_0
to IO_7. The Neuron Chip or Smart Transceiver
checks the logic level at this pin whenever it is waiting
for either rising or falling edges of the clock. If a logic
level of 1 is sensed, the transfer is terminated.

clockedge (+|-) specifies the polarity of the clock input signal. The
default is clockedge (-).

invert specifies that the data input signal is inverted. The
default is no inversion.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Neuron C Reference Guide 8-21

Usage
unsigned int count;

unsigned int input-buffer[buffer-size];

count = io_in(io-object-name, input-buffer);

Example
// In this example I/O pin IO_7 is connected to a
// ~Data_valid signal which is asserted low as long
// as a valid clock input is being generated by the
// reader device.

IO_8 input magcard timeout(IO_7) io_card_data;

// This next object allows monitoring of the ~Data_valid
// input signal.
IO_7 input bit io_not_data_valid;

int nibbles_read;
unsigned int in_buffer[20];
. . .
when (io_changes(io_not_data_valid) to 0)
{

nibbles_read = io_in(io_card_data, in_buffer);
}

8-22 I/O Objects

MagTrack1 Input DIRECT I/O OBJECT
This I/O object type is used to transfer synchronous serial data from an ISO
3554 Track 1 magnetic stripe card reader. See the MagCard I/O object for
Track 2 compatible input. The data is presented as a data signal input on pin
IO_9, and a clock, or data strobe, signal input on pin IO_8. The data on pin
IO_9 is clocked on or just following the falling edge of the signal on IO_8,
least significant bit first.

Data is recognized in the IATA format—as a series of 6-bit characters plus an
odd parity bit per character. This process begins when the start sentinel (hex
05) is recognized, and continues until the end sentinel (hex 0F) is recognized.
No more than 79 characters, including the two sentinels and the LRC
character, will be read. The data is stored as right-justified bytes in the
buffer space pointed to by the buffer pointer argument to the io_in()
function with the parity stripped, and includes the start and end sentinel
characters. This buffer should be 78 bytes long.

For magtrack1 input, the io_in() function requires a pointer to a data
buffer, into which the series of 6-bit characters are stored. The io_in()
function returns a signed int that contains the actual number of bytes
stored.

The parity of each character is checked. The longitudinal redundancy check
(LRC) character, which appears just after the end sentinel, is also checked. If
either of these tests fail, if more than 79 characters are being clocked in, or if
the process aborts due to an input pin event (see below), the io_in() function
will return the value (-1) as an error indication. The LRC character is not
stored.

The magtrack1 object will also use one of I/O pins IO_0 through IO_7 as a
timeout or abort pin. Use of this feature is suggested since the io_in()
function will update the watchdog timer during clock wait states, and could
result in a lockup if the card were to stop moving in the middle of the transfer
process. If a '1' level is detected on the I/O timeout pin, the io_in() function
will abort. This input can be a one-shot timer counter output, an RC circuit,
or a ~Data_valid signal from the card reader.

A Neuron Chip or Smart Transceiver with a 10MHz input clock rate can
process a bit rate of up to 7246 bps when the strobe signal has a 33/66 duty
cycle (CK_hi = 46µs and CK_lo = 92µs). At a bit density of 210 bits per inch
this is a card speed of 34.5 inches per second). Most magnetic card stripes
contain a series of zero data at the start of the card, allowing time for the
application to start the card reading function.

Neuron C Reference Guide 8-23

Syntax
IO_8 [input] magtrack1 timeout (pin-nbr) [clockedge (+|-)] [invert]
 io-object-name;

IO_8 specifies pin IO_8. Magtrack1 input requires both
pins IO_8 and IO_9. Pin IO_8 is the negative-going
clock, IO_9 is the serial data input.

timeout(pin-nbr) specifies the timeout signal pin, in the range of IO_0
to IO_7. The Neuron Chip or Smart Transceiver
checks the logic level at this pin whenever it is waiting
for either rising or falling edges of the clock. If a logic
level of 1 is sensed, the transfer is terminated.

clockedge (+|-) specifies the polarity of the clock input signal. The
default is clockedge (-).

invert specifies that the data input signal is inverted. The
default is no inversion.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Usage
unsigned int count;
unsigned int input-buffer[buffer-size];

count = io_in(io-object-name, input-buffer);

Example
// In this example I/O pin IO_7 is connected to a
// ~Data_valid signal which is asserted low as long
// as a valid clock input is being generated by the
// reader device.
IO_8 input magtrack1 timeout(IO_7) io_card_data;

// This next object allows monitoring of the
// ~Data_valid input signal.
IO_7 input bit io_not_data_valid;
int chars_read;
unsigned int in_buffer[78];
. . .
when (io_changes(io_not_data_valid) to 0)
{

chars_read = io_in(io_card_data, in_buffer);
}

8-24 I/O Objects

Muxbus Input/Output PARALLEL I/O OBJECT
This I/O object type uses all eleven I/O pins to form an 8 bit address and bi-
directional data bus interface. This I/O object uses pins IO_0 through IO_7
for the 8 bit address bus and the 8 bit data bus. Pins IO_8 through IO_10 are
control signals which are always driven by the Neuron Chip or Smart
Transceiver:

Pin Function

IO_0 thru IO_7 Address and bi-directional data

IO_8 C_ALS: Address latch strobe, asserted high

IO_9 ~C_WS: Write strobe, asserted low

IO_10 ~C_RS: Read strobe, asserted low

This I/O object provides the capability to build an 8-bit data bus system
utilizing an 8-bit address bus. Typically, an 8-bit D-type latch (such as a
74HC573) is connected to the Neuron I/O pins where pins IO_0 through IO_7
are connected to the eight Q inputs. Pin IO_8 is connected to the Latch
Enable input. In this configuration, 8 bits of address are latched on the 8 D
output pins of the '573 device.

Pins IO_9 and IO_10 are the write and read strobes, normally high.

For muxbus output, the io_out() function requires an optional 8-bit address
argument, and an 8-bit data argument. If the address argument is provided,
the Neuron firmware will first set pins IO_0 through IO_7 as outputs, then
place the address value on these pins, and pulse C_ALS from low to high to
low. This latches the address into the address data latch device.

If the address is not provided, this step is skipped. The current value latched
in the address latch remains unchanged.

The Neuron firmware then places the data argument value on pins IO_0
through IO_7, and pulses ~C_WS from high to low to high.

For muxbus input the io_in() function allows an optional 8-bit address
argument only. If this argument is provided, the address is emitted and
latched in the same manner as for the io_out() function.

Finally, the Neuron firmware sets pins IO_0 through IO_7 as inputs. It
drops ~C_RS from high to low, inputs the 8 bits of data from pins IO_0
through IO_7, and raises ~C_RS from low to high. The function then returns
the 8-bit data value read.

Note that after a read operation, pins IO_0 to IO_7 are left in the high
impedance state. This could cause excessive power consumption of the 8-bit
latch. Using pull-up resistors, or ensuring that the last I/O operation is a
write will avoid this situation.

The address argument is optional as a performance enhancement where a
bus device can be repeatedly read from or written to without changing the
bus address. The application must keep track of the current bus address
when using this feature. No events are associated with this I/O object.

Neuron C Reference Guide 8-25

Syntax
IO_0 muxbus io-object-name;

IO_0 specifies pin IO_0. Muxbus input/output requires all
eleven pins and must specify pin IO_0.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Usage
unsigned int data-byte;

data-byte = io_in(io-object-name, address);

data-byte = io_in(io-object-name);

io_out(io-object-name, address, data-byte);

io_out(io-object-name, data-byte);

Example
IO_0 muxbus io_local_bus;

when (. . .)
{

// write two bytes to addresses 0x20 and 0x21,
// and wait for the data at 0x20 to contain
// the 0x80 value.
io_out(io_local_bus, 0x20, 128);
io_out(io_local_bus, 0x21, 1);
if ((io_in(io_local_bus, 0x20) & 0x80) == 0)
{

// continue to read the same address.
while ((io_in(io_local_bus) & 0x80) == 0);

{
}

Neurowire Input/Output SERIAL I/O OBJECT
This I/O object type is used to transfer data using a fully synchronous serial
data format. Data is shifted in at the same time as data is shifted out.
Neurowire I/O is useful for external devices, such as A/D, D/A converters and
display drivers incorporating serial interfaces that conform with National
Semiconductor's Microwire™ or Motorola's SPI interface.

The Neurowire I/O object may be configured in master mode or slave mode.
The primary difference between master and slave modes is that the clock
signal is an output for the master mode, and an input for the slave mode.

In Neurowire master mode, one or more of the pins IO_0 through IO_7 may
be used as a chip select, allowing multiple Neurowire devices to be connected
on a 3-wire bus. The clock rate may be specified as 1, 10, or 20kbps at a
Neuron Chip input clock rate of 10MHz; these scale proportionally with
input clock.

In Neurowire slave mode, one of the pins IO_0 through IO_7 may be
designated as a timeout pin. A logic one level on the timeout pin causes the

8-26 I/O Objects

Neurowire slave I/O operation to be terminated before the specified number
of bits has been transferred. This prevents the Neuron Chip or Smart
Transceiver watchdog timer from resetting the chip in the event that fewer
than the requested number of bits are transferred by the external clock.

In both master and slave modes, up to 255 bits of data may be transferred at
a time. Neurowire I/O suspends application processing until the operation is
complete.

For Neurowire input/output, io_in() and io_out() require a pointer to the
data buffer as the input_value and output_value. Because Neurowire I/O
is bidirectional, input and output occur at the same time, and therefore, the
calls io_in() and io_out() are equivalent. Use of either call will initiate a
bidirectional transfer. Data is transmitted 8 bits at a time, most significant
bit first. The clock edge used to clock the data is specified by the clock edge
parameter. Data is also then transferred into the same buffer pointed to by
input_value or output_value, most significant bit first, following the clock
edge, overwriting the original contents of the buffer. If the number of bits to
be transferred is not a factor of eight as defined by count, the last byte
transferred into the buffer will contain undefined data bit values in the
remaining (unfilled) bit locations.

When using multiple serial or Neurowire I/O objects which have differing bit
rates, the following pragma must be used:

 #pragma enable_multiple_baud

This pragma must appear prior to the use of any I/O function (e.g. io_in() or
io_out()).

For examples on the use of the Neurowire input/output object, see the
following engineering bulletins: Driving a Seven Segment Display with the
Neuron Chip (part no. 005-0014-01) and Analog-to-Digital Conversion with
the Neuron Chip
(part no. 005-0019-01).

Syntax
IO_8 neurowire master | slave [select (pin-nbr)] [timeout (pin-nbr)]

 [kbaud (const-expr)] [clockedge (+|-)] io-object-name;

IO_8 specifies pin IO_8. Neurowire requires pins IO_8
through IO_10 and must specify IO_8. The select pin
must be one of IO_0 through IO_7. Pin IO_8 is the
clock, driven by the Neuron Chip, or Smart
Transceiver (or the external master). Pin IO_9 is
serial data output and IO_10 is serial data input. Up
to 255 bits of data can be transferred at a time.

master specifies that the Neuron Chip or Smart Transceiver
provides the clock on pin IO_8, which is configured as
an output pin.

slave specifies that the Neuron Chip or Smart Transceiver
senses the clock on pin IO_8, which is configured as an
input pin. The maximum input clock rate is 18kbps,
50/50 duty cycle, with a 10MHz Neuron firmware
input clock. This rate scales proportionally to the
input clock.

Neuron C Reference Guide 8-27

select (pin-nbr)
NOTE: this is
applicable to
master mode only.

specifies the chip select pin for a Neurowire master. Before
the data transfer, the chip select pin goes low; after the data
transfer, the select pin goes high. In addition to this
declaration with the select keyword, the chip select pin
must also be declared with a bit output object, unless there
is no chip select pin in use. If no chip select pin is in use,
the pin declared as the select pin can also be declared as
any of the allowable input objects for that pin (for example,
bit input). Not used for a Neurowire slave.

timeout (pin-nbr)
NOTE: this is
applicable to
slave mode only.

specifies the optional timeout signal pin for a Neurowire
slave, in the range of IO_0 to IO_7. When a timeout signal
pin is used, the Neuron firmware will check the logic level
at this pin whenever it is waiting for either rising or falling
edges of the clock. If a logic level of 1 is sensed, the transfer
is terminated. This allows the use of an external timeout
signal, or an internally generated timeout signal, such as an
inverted oneshot output object, to limit the duration of the
transfer. The watchdog timer is updated by this object
every falling edge of the clock on pin IO_8. Not used for a
Neurowire master.

kbaud (const-expr) specifies the bit rate for a Neurowire master. The
expression const-expr can evaluate to 1, 10, or 20. The
default is 20kbps with a 10MHz Neuron input clock.
The bit rate scales proportionally to the input clock.
Not used for a Neurowire slave.

clockedge (+|-) specifies the polarity of the clock signal. The default
is a rising edge clock, clockedge (+). Specifying
clockedge (-) causes the data to be clocked at the
falling edge of the clock signal.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

8-28 I/O Objects

Usage
unsigned int count, io-buffer[buffer-size];

io_out(io-object-name, io-buffer, count);

Example
IO_8 neurowire master select(IO_2) io_display;
IO_2 output bit io_display_select = 1; // active low

unsigned int dd_config = 0x01; // 8 bits=>display
config reg
unsigned int dd_data[3]; // 24 bits=>display
data reg

when (...)
{

dd_config = 0x01;
io_out(io_display, &dd_config, 8);
dd_data[0] = 0x80;
dd_data[1] = 0xAB;
dd_data[2] = 0xCD;
io_out(io_display, dd_data, 24);

}

Nibble Input/Output DIRECT I/O OBJECT
This I/O object type is used to read or control four adjacent pins
simultaneously. For nibble input/output, the data type of return_value for
io_in(), and the data type of the output value for io_out() is an unsigned
short. If you wish to enable the Neuron Chip or Smart Transceiver's built-in
pull-up resistors, you should add the statement #pragma
enable_io_pullups to the Neuron C program (see the Compiler Directives
section in Chapter 1 of the Neuron C Programmer's Guide for more details).

Syntax
pin input nibble io-object-name;

pin output nibble io-object-name [=initial-output-level];

pin an I/O pin. Nibble input/output requires four adjacent
pins. The pin specification denotes the lowest
numbered pin of the set and can be IO_0 through
IO_4. The lowest numbered IO pin is defined as the
least significant bit of the nibble data.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Neuron C Reference Guide 8-29

initial-output-level is a constant expression, in ANSI C format for
initializers, used to set the state of the output pin of
the I/O object at initialization. The initial state can be
from 0 to 15. The default is 0.

Usage
unsigned int input-value;

unsigned int output-value;

input-value = io_in(io-object-name);

io_out(io-object-name, output-value);

Nibble Input Example
IO_0 input nibble io_column_read;
int column;

when (reset)
{

io_change_init(io_column_read);
}

when (io_changes(io_column_read))
{

column = input_value;
}

Nibble Output Example
IO_4 output nibble io_row_write;

when (...)
{

io_out(io_row_write, 0b1000U);
}

Oneshot Output TIMER/COUNTER I/O OBJECT
This I/O object type produces a single output pulse whose duration is a
function of output_value and the selected clock value:

duration (ns) = output_value * 2000 * 2^(clock) / input_clock (MHz);

The oneshot can be retriggered. A call to io_out() for a oneshot object will
start a new pulse, even if one is currently in progress.

For oneshot output, the data type of the output value for io_out() is an
unsigned long. An output value of 0 forces the output to a low state.

Syntax
pin [output] oneshot [invert] [clock (const-expr)] io-object-name
 [=initial-output-level];

8-30 I/O Objects

pin specifies either pin IO_0 (using the multiplexed
timer/counter) or IO_1 (using the dedicated
timer/counter).

invert causes the output to be inverted, producing a signal
that is normally high with low pulses. The default is
normally low with high pulses.

clock (const-expr) specifies a clock in the range 0 to 7, where 0 is the
fastest clock and 7 is the slowest clock. The default
clock for oneshot output is clock 7. The
io_set_clock() function can be used to change the
clock. The clock values are as follows for a Neuron
input clock of 10 MHz:

Clock Oneshot Duration
0 0 to 13.11ms in steps of 200 ns (0-65535)
1 0 to 26.21ms in steps of 400 ns
2 0 to 52.421ms in steps of 800 ns
3 0 to 104.86ms in steps of 1.6 µs
4 0 to 209.71ms in steps of 3.2 µs
5 0 to 419.42ms in steps of 6.4 µs
6 0 to 838.85ms in steps of 12.8 µs
7 (default) 0 to 1.677sec in steps of 25.6 µs

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

initial-output-level is a constant expression, in ANSI C format for
initializers, used to set the state of the output pin of
the I/O object at initialization. The initial state may
be 0 or 1. The
default is 0.

Usage
unsigned long output-value;

io_out(io-object-name, output-value);

Neuron C Reference Guide 8-31

Example
IO_0 output oneshot io_flasher;
unsigned long k = 39062; // 1 second pulse

mtimer repeating flash_timer;

when (...)
{

flash_timer = 2000; // start timer, flash every 2
secs
}

when (timer_expires(flash_timer))
{

io_out(io_flasher, k); // outputs a 1 sec pulse
}

Ontime Input TIMER/COUNTER I/O OBJECT
This I/O object type measures the high or low period of an input signal in
units of the clock period:

time_on (ns) = return_value * 2000 * 2^(clock) / input clock (MHz)

For ontime input, the data type of the return value for io_in() is an
unsigned long.

The state of the input pin is latched in hardware every 200ns with a 10MHz
Neuron input clock (the value scales at lower or lower clock speeds).

Syntax
pin [input] ontime [mux | ded] [invert] [clock (const-expr)] io-object-
name;

pin an I/O pin. Ontime input can specify pin IO_4
through IO_7.

mux | ded specifies whether the I/O object is assigned to the
multiplexed or dedicated timer/counter. This field is
used only when pin IO_4 is used as the input pin. The
mux keyword assigns the I/O object to the
multiplexed timer/counter. The ded keyword assigns
the I/O object to the dedicated timer/counter. The
multiplexed timer/counter is always used for pins
IO_5 through IO_7.

invert causes the measurement of the low period of the input
signal. By default, measurement occurs on the high
period of the output signal.

8-32 I/O Objects

clock (const-expr) specifies a clock in the range 0 to 7, where 0 is the
fastest clock and 7 is the slowest clock. The default
clock for ontime input is clock 2. The io_set_clock()
function can be used to change the clock. The clock
values are as follows for a Neuron input clock of
10MHz:

Clock Input Range and Resolution
0 0 to 13.11ms in steps of 200 ns (0-65535)
1 0 to 26.21ms in steps of 400 ns
2
(default)

0 to 52.42ms in steps of 800 ns

3 0 to 104.86ms in steps of 1.6 µs
4 0 to 209.71ms in steps of 3.2 µs
5 0 to 419.42ms in steps of 6.4 µs
6 0 to 838.85ms in steps of 12.8 µs
7 0 to 1.677sec in steps of 25.6 µs

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Usage
unsigned long input-value;

input-value = io_in(io-object-name);

Example
IO_4 input ontime ded clock(7) io_gate_time;
unsigned long pulse_duration;

when (io_update_occurs(io_gate_time))
{

pulse_duration = input_value;
// measures up to 1.677 seconds

}

Parallel Input/Output PARALLEL I/O OBJECT
This I/O object type uses all eleven I/O pins for an 8 bit parallel interface
with handshaking. This interface allows data transfer at rates up to
3.3Mbps. These are the reasons for using a parallel interface:

• To interface a Neuron Chip or Smart Transceiver to an attached
microprocessor or to the bus of a computer system. This interface can use the
Neuron Chip or Smart Transceiver as a communications chip with an
existing processor-based system, provide more application performance, or
supply more memory. This type of interface is enhanced with a ShortStack
Micro Server (with an SCI or SPI interface or Microprocessor Interface
Program (MIP; with parallel or dual-ported RAM interface). The ShortStack
Micro Server and MIP move network variable and application message
processing to the attached processor.

Neuron C Reference Guide 8-33

• For application-level gateways, two Neuron Chips are connected back to back
across the parallel interface, producing two transceiver interfaces to
transport a packet from one system to the other.

This interface is bidirectional, with the direction (read/write) controlled by
the device declared as the master. When using this interface, the Neuron
Chip or Smart Transceiver can be either a master or a slave. The parallel I/O
object provides three different configurations of the parallel I/O interface:
master, slave A, and slave B. Master-slave A connections are typically used
for parallel port interfaces and for Neuron Chip/Smart Transceiver to Neuron
Chip/Smart Transceiver communication. Slave B is typically used for
communicating from a microprocessor bus to a Neuron Chip or Smart
Transceiver. Multiple slave B devices can be connected to a single bus. The
difference between slave A and slave B concerns the use of one of the three
control signals (see the following description of the keywords slave, slave_b,
and master).

No other I/O objects can be declared when the parallel I/O object is being
used.

Neuron C Resources
In order to use the parallel I/O object of the Neuron Chip or Smart
Transceiver, io_in() and io_out() require a pointer to the
parallel_io_interface structure :

struct parallel_io_interface
{

unsigned length; // length of data field
unsigned data[MAXLENGTH]; // data field

} piofc;

The previous structure must be declared, with an appropriate definition of
MAXLENGTH signifying the largest expected buffer size for any data
transfer.

In the case of io_out(), length is the number of bytes to be transferred out
and is set by the application program. In the case of io_in(), length is the
number of bytes to be transferred in. If the incoming length is larger than
length, then the incoming data stream is flushed, and length is set to zero.
Otherwise, length is set to the number of data bytes read. The length field
must be set before calling io_in() or io_out(). The maximum value for the
length and MAXLENGTH fields is 255.

The following functions and events are provided specifically for use with the
parallel I/O object:

io_in_ready() this event becomes TRUE whenever a message arrives
on the parallel bus that must be read. The application
must then call io_in() to retrieve the data.

io_out_request() this function is used to request an io_out_ready
indication for an I/O object. It is up to the application
to buffer the data until the io_out_ready event is
TRUE. This function acquires the token for the
parallel I/O interface.

8-34 I/O Objects

io_out_ready() this event becomes TRUE whenever the parallel bus is
in a state where it can be written to and the
io_out_request() function was previously invoked.
The application must then call the io_out() function
to write the data to the parallel port. This function
relinquishes the token for the parallel I/O interface.

Neuron C applications that use the parallel bus in a unidirectional manner
may be written (i.e., applications may be written without either an
io_in_ready or io_out_ready when clause).

See the Parallel I/O Object section in Chapter 2 of the Neuron C
Programmer's Guide for additional information. Also see the Parallel I/O
Interface to the Neuron Chip engineering bulletin (part no. 005-0021-01) for
more information.

To prevent contention for the data bus, a virtual “write token” is passed back
and forth between the master device and the slave device (in both slave A and
slave B modes). The master device has the write token initially after a reset.
The parallel I/O object declared on a Neuron Chip automatically manages the
write token.

Syntax
IO_0 parallel slave | slave_b | master io-object-name;

IO_0 specifies pin IO_0. Parallel input/output requires all
eleven pins and must specify pin IO_0. The pins are
used as follows:

Pin Master Slave A Slave B
IO_0 thru IO_7 Data Bus Data Bus Data Bus
IO_8 Chip select output Chip select input Chip select input
IO_9 RD/~WR output RD/~WR input RD/~WR input
IO_10 HANDSHAKE

input
HANDSHAKE
input

A0 input

slave | slave_b | master
specifies slave A, slave B, or master mode. For master
and slave A modes, IO_10 is a handshake signal. For
slave B mode, IO_10 becomes an address line input,
A0, and the handshake signal appears on the data bus
on pin IO_0 when A0=1. When A0=0, the data
appears on the data bus. This mode is used to allow a
Neuron Chip or Smart Transceiver to reside on a
microprocessor bus with the data at one address
location and the handshake signal at another.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Neuron C Reference Guide 8-35

Usage
struct parallel_io_interface {
 unsigned int length;
 unsigned int data[data-size];
} piofc;

io_in(io-object-name, &piofc);

io_request(io-object-name);

io_out(io-object-name, &piofc);

Example
The following example shows how to use the io_in_ready and io_out_ready
events, in conjunction with the io_out_request() function, to handle
parallel I/O processing. (See also the description of the parallel I/O object in
Chapter 2 of the Neuron C Programmer's Guide and the Parallel I/O
Interface to the Neuron Chip engineering bulletin (part no. 005-0021-01))

IO_0 parallel slave s_bus;
#define DATA_SIZE 255
struct parallel_io_interface
{

unsigned int length; // length of data field
unsigned int data [DATA_SIZE];

} piofc;

when (io_in_ready(s_bus)) // ready to input data
{

piofc.length = DATA_SIZE; // number of bytes to read
io_in(s_bus &piofc); // get 10 bytes of incoming data

}

when (io_out_ready(s_bus)) // ready to output data
{

piofc.length = 10; // number of bytes to write
io_out(s_bus, &piofc); // output 10 bytes from

buffer
}

when (...) // user defined event
{

io_out_request(s_bus); // post the write transfer
request
}

Period Input TIMER/COUNTER I/O OBJECT
This I/O object type measures the total period, from edge to edge, of an input
signal in units of the clock period:

period (ns) = return_value * 2000 * 2^(clock) / input_clock (MHz)

For period input, the data type of the return value for io_in() is an
unsigned long.

8-36 I/O Objects

The input is latched every 200ns with a 10MHz Neuron input clock. This
value scales at lower input clock speeds.

Syntax
pin [input] period [mux | ded] [invert]

 [clock (const-expr)] io-object-name;

pin an I/O pin. Period input can specify pins IO_4
through IO_7.

mux | ded specifies whether the I/O object is assigned to the
multiplexed or dedicated timer/counter. This field
only applies, and must be used, when pin IO_4 is the
input pin. The mux keyword assigns the I/O object to
the multiplexed timer/counter. The ded keyword
assigns the I/O object to the dedicated timer/counter.
The multiplexed timer/counter is always used for pins
IO_5 through IO_7.

invert causes the measurement of time between positive
edges and typically has no effect. By default, period
input measures the time between negative edges.

clock (const-expr) specifies a clock in the range 0 to 7, where 0 is the
fastest clock and 7 is the slowest clock. The default
clock for period input is clock 0. The io_set_clock()
function can be used to change the clock. The clock
values are as follows for a Neuron input clock of 10
MHz:

Clock Range and Resolution of Period

0 (default) 0 to 13.11ms in steps of 200 ns (0-65535)

1 0 to 26.21ms in steps of 400 ns

2 0 to 52.42ms in steps of 800 ns

3 0 to 104.86ms in steps of 1.6 µs

4 0 to 209.71ms in steps of 3.2 µs

5 0 to 419.42ms in steps of 6.4 µs

6 0 to 838.85ms in steps of 12.8 µs

7 0 to 1.677s in steps of 25.6 µs

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Neuron C Reference Guide 8-37

Usage
unsigned long input-value;

input-value = io_in(io-object-name);

Example
IO_4 input period mux clock(7) io_switch_4;

when (io_update_occurs(io_switch_4)) // END OF PERIOD
{

unsigned short timegap; // in tenths of a second

timegap = (unsigned short)(io_in(io_switch_4) /
3906);

// convert to tenths of sec
}

Pulsecount Input TIMER/COUNTER I/O OBJECT
This I/O object type counts the number of input edges at the input pin over a
period of 0.8388608 seconds. For pulsecount input, the data type of the
return value for io_in() is an unsigned long.

The input is latched every 200ns with a 10MHz Neuron input clock. This
value scales at lower input clock speeds. The value of a pulsecount input
object is updated every 0.8388608 seconds and the io_update_occurs event
becomes TRUE.

Syntax
pin input pulsecount [mux | ded] [invert] io-object-name;

pin an I/O pin. Pulsecount input can specify pins IO_4
through IO_7.

mux | ded specifies whether the I/O object is assigned to the
multiplexed or dedicated timer/counter. This field is
used only when pin IO_4 is used as the input pin. The
mux keyword assigns the I/O object to the multiplexed
timer/counter. The ded keyword assigns the I/O object
to the dedicated timer/counter. The multiplexed
timer/counter is always used for pins IO_5 through
IO_7.

invert causes positive edges to be counted and typically has
no effect. By default, pulsecount input counts the
number of negative input edges.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

8-38 I/O Objects

Usage
unsigned long input-value;

input-value = io_in(io-object-name);

Example
IO_7 input pulsecount io_total_ticks;
unsigned long k;

when (io_update_occurs(io_total_ticks))
{

k = input_value; // for up to 65535 ticks per
0.839 seconds
}

Pulsecount Output TIMER/COUNTER I/O OBJECT
This I/O object type produces a sequence of pulses whose period is a function
of the clock period:

period (ns) = 256 * 2000 * 2^(clock) / input_clock (MHz)

The output_value determines the number of pulses output. When this I/O
object is used, the io_out() function call does not return until all pulses have
been produced. This process ties up the application processor for the
duration of the pulsecount.

For pulsecount output, the data type of the output value for io_out() is an
unsigned long. An output value of 0 forces the output signal to its normal
state.

Syntax
pin output pulsecount [invert] [clock (const-expr)] io-object-name
 [=initial-output-level];

pin specifies either pin IO_0 (using the multiplexed
timer/counter) or IO_1 (using the dedicated
timer/counter).

invert causes the signal to be inverted, normally high with
low pulses. By default, the signal is normally low
with high pulses.

Neuron C Reference Guide 8-39

clock (const-expr) specifies a clock in the range 1 to 7, where 1 is the
fastest clock and 7 is the slowest clock. The default
clock for pulsecount output is clock 7. The
io_set_clock() function can be used to change the
clock. (Specifying clock 0 for io_set_clock() results
in an unspecified number of counts, since this is not a
valid clock for pulsecount output.) The periods of the
pulses for a Neuron input clock of 10MHz are as
follows:

Clock Pulse Period (50/50 duty cycle)

1 102.4 µs

2 204.8 µs

3 409.6 µs

4 819.2 µs

5 1.638 ms

6 3.277 ms

7 (default) 6.554 ms

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

initial-output-level is a constant expression, in ANSI C format for
initializers, used to set the state of the output pin of
the I/O object at initialization. The initial state may
be 0 or 1. The default is 0.

Usage
unsigned long output-value;

io_out(io-object-name, output-value);

Example
IO_1 output pulsecount io_train_out;

when (...)
{

io_out(io_train_out, 100); // will produce 100
// pulses on pin 1

} // each pulse of period 6.554 milliseconds

8-40 I/O Objects

Pulsewidth Output TIMER/COUNTER I/O OBJECT
This I/O object type produces a repeating waveform whose duty cycle is a
function of output_value and whose period is a function of the clock period:

pulsewidth (ns) = output_value * 2000 * 2^(clock) / input_clock (MHz)

total_period (ns) = 256 * 2000 * 2^(clock) / input_clock (MHz)

For 8-bit pulsewidth output, the data type of output_value for io_out() is
an unsigned short. An output_value of 0 results in a 0% duty cycle. A
value of 255 (the maximum value allowed) results in a 100% duty cycle. The
duty cycle of the pulse train is (output_value/256), except when
output_value is 255; in that case, the duty cycle is 100%.

For 16-bit pulsewidth output, the data type of output_value for io_out() is
an unsigned long. An output_value of 0 results in a 0% duty cycle. A
value of 65535 (the maximum value allowed) results in a 99.998% duty cycle.
The duty cycle of the pulse train is (output_value/65536).

Syntax
pin [output] pulsewidth [short | long] [invert] [clock (const-expr)] io-
object-name
 [=initial-output-level];

pin specifies either pin IO_0 (using the multiplexed
timer/counter) or IO_1 (using the dedicated
timer/counter).

short | long Resolution of the data value: short specifies 8-bit
pulsewidth output, long specifies 16-bit.

invert causes the output signal to be inverted, normally high
for a 0% duty cycle. By default, the output signal is
normally low for a 0% duty cycle.

clock (const-expr) specifies a clock in the range 0 to 7, where 0 is the
fastest clock and 7 is the slowest clock. The default
clock for pulsewidth output is clock 0. The
io_set_clock() function can be used to change the
clock. The clock values are as follows for an input
clock of 10 MHz:

Neuron C Reference Guide 8-41

8-bit Pulsewidth Output

Clock Control Range

0 (default) 19.53kHz in steps of 200 ns (0-255)

1 9.77kHz in steps of 400 ns

2 4.88kHz in steps of 800 ns

3 2.44kHz in steps of 1.6 µs

4 1.22kHz in steps of 3.2 µs

5 610.3Hz in steps of 6.4 µs

6 305.1Hz in steps of 12.8 µs

7 152.6Hz in steps of 25.6 µs

16-bit Pulsewidth Output

Clock Control Range

0 (default) 76.29Hz in steps of 200 ns (0-65535)

1 38.16Hz in steps of 400 ns

2 19.06Hz in steps of 800 ns

3 9.53Hz in steps of 1.6 µs

4 4.77Hz in steps of 3.2 µs

5 2.38Hz in steps of 6.4 µs

6 1.19Hz in steps of 12.8 µs

7 0.60Hz in steps of 25.6 µs

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

initial-output-level is a constant expression, in ANSI C format for
initializers, used to set the state of the output pin of
the I/O object at initialization. The initial state is
limited to 0 or 1. The default is 0.

8-42 I/O Objects

Usage
unsigned int output-value; // for 8-bit output

unsigned long output-value; // for 16-bit output

io_out(io-object-name, output-value);

Example
IO_1 output pulsewidth clock(7) io_lamp_led;

mtimer repeating tick_timer;
unsigned long brightness;

when (...)
{

tick_timer = 10; // start clock for fading
brightness = 255; // start brightness for fading

}

when (timer_expires(tick_timer))
{

brightness -= 1;
io_out(io_lamp_led, (short) brightness);
if (brightness == 0)

tick_timer = 0; // turn off the timer
}

Quadrature Input TIMER/COUNTER I/O OBJECT
This I/O object type is used to read a shaft or positional encoder input on two
adjacent pins. A signed long value is returned from io_in(), based on the
change since the last input. The input is sampled every 200 ns with a 10MHz
Neuron input clock. This value scales at lower and higher input clock speeds.
To enable the Neuron Chip's or Smart Transceiver's built-in pull-up resistors,
add a #pragma enable_io_pullups to the Neuron C program. For more
information on quadrature input, see Neuron Chip Quadrature Input
Function Interface engineering bulletin.

Syntax
pin [input] quadrature io-object-name;

pin an I/O pin. Quadrature input requires two adjacent
pins. The pin specification denotes the lower-
numbered pin of the pair. The pin can be IO_4 (which
uses the dedicated timer/counter) or IO_6 (which uses
the multiplexed timer/counter).

Neuron C Reference Guide 8-43

 Figure 8.3 illustrates the use of the two signal inputs
A and B. Both edges of input A are counted. Input B
indicates whether input A is moving in a positive or a
negative direction.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Input A

Input B

Input A

Input B

200 ns
minimum

One direction
(for example, positive)

One direction
(for example, negative)

Figure 8.3 Quadrature Input

Usage
long input-value;

input-value = io_in(io-object-name);

Example
IO_4 input quadrature io_dial;

long dial_angle = 0;

when (io_update_occurs(io_dial))
{

dial_angle += input_value;
// integrate angle in software

}

8-44 I/O Objects

Serial Input/Output SERIAL I/O OBJECT
This I/O object type is used to transfer data using an asynchronous serial
data format, as in EIA-232 (formerly RS-232) and serial communications
interface (SCI) communications. The format for the transfer is: one start bit,
followed by eight data bits (least significant bit first), followed by one stop bit.
The input serial I/O object will wait for the start of the data frame to be
received for up to the time it would take to receive 20 characters before
returning a zero. Input is terminated when either the total count in bytes is
received, or the amount of time it would take to receive 20 characters has
passed with no data received. The input serial I/O object will stop receiving
data on invalid stop bit or parity. At 2400bps, the input timeout is 83ms.

When using multiple serial I/O devices which have differing bit rates, the
following pragma must be used:

 #pragma enable_multiple_baud

This pragma must appear prior to the use of any I/O function, e.g. io_in(),
io_out().

For serial input/output, io_in() and io_out() require a pointer to the data
buffer as the input_value and output_value. The io_in() function returns
an unsigned short int that contains the count of the actual number of bytes
received. See the EIA-232C Serial Interfacing with the Neuron Chip
engineering bulletin (part no. 005-0008-01) for more information.

The serial input model provides only one bit of buffering and a maximum
speed of 4800 bps. For bit rates up to 115.2kbps, and 16 bytes of buffering,
consider using the PSG-20 or PSG/3 programmable serial gateway devices.
See the PSG user's guide for more details.

Syntax
pin input serial [baud (const-expr)] io-object-name;

pin output serial [baud (const-expr)] io-object-name;

pin an I/O pin. Serial input requires one pin and must
specify IO_8. Serial output also requires one pin and
must specify IO_10.

baud (const-expr) specifies the bit rate. The expression const-expr can
be 600, 1200, 2400, or 4800. The default is 2400bps
with a 10MHz input clock. The baud rate scales
proportionally to the Neuron input clock.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Neuron C Reference Guide 8-45

Usage
unsigned int count, input-buffer[buffer-size], output-buffer[buffer-size];

count = io_in(io-object-name, input-buffer, count);

io_out(io-object-name, output-buffer, count);

Serial Input Example
IO_8 input serial io_keyboard;
char in_buffer[20];
unsigned int num_chars;

when (...)
{

num_chars = io_in(io_keyboard, in_buffer, 20);
}

Serial Output Example
IO_10 output serial io_crt_screen;
char out_buffer[20];

when (...)
{

io_out(io_crt_screen, out_buffer, 20);
}

Totalcount Input TIMER/COUNTER I/O OBJECT
This I/O object type counts the number of input edges at the input pin since
the last io_in() operation, or since initialization. For totalcount input, the
data type of return_value for io_in() is an unsigned long.

The minimum duration for a high or low input signal for this I/O object is
200ns with a 10MHz Neuron Chip input clock. This value scales at lower and
higher input clock speeds.

Syntax
pin [input] totalcount [mux | ded] [invert] io-object-name;

pin an I/O pin. Totalcount input can specify pins IO_4
through IO_7.

mux | ded specifies whether the I/O object is assigned to the
multiplexed or dedicated timer/counter. This field is
used only when pin IO_4 is used as the input pin. The
mux keyword assigns the I/O object to the
multiplexed timer/counter. The ded keyword assigns
the I/O object to the dedicated timer/counter. The
multiplexed timer/counter is always used for pins
IO_5 through IO_7.

8-46 I/O Objects

invert causes positive edges to be counted. By default,
totalcount input counts the number of negative input
edges.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Usage
unsigned long input-value;

input-value = io_in(io-object-name);

Example
IO_4 input totalcount ded io_event_count;
unsigned long total_num_events = 0;
mtimer repeating t;

when (timer_expires(t))
{

total_num_events += io_in(io_event_count);
// this sums up all events since initialization-time

}

Touch Input/Output DIRECT I/O OBJECT
This I/O object type is used to interface to the 1-WIRE protocol developed by
Dallas Semiconductor Corporation to communicate with Touch Memories and
similar devices. The touch I/O object will only operate within the timing
specifications set forth by Dallas Semiconductor Corporation for the 1-WIRE
protocol at Neuron input clock rates of 10MHz or 5MHz. This interface
supports bi-directional data transfers across a signal and ground wire pair.
An external pullup is required, and the interface is connected directly to the
designated I/O pin. This I/O pin is operated as an open-drain device in order
to support the interface.

Up to 255 bytes of data may be transferred at a time.

For more information on this protocol and the devices that it supports, see
the publication Book of DS19xx Touch Memory Standards, Dallas
Semiconductor Corporation, Edition 2.0 or later.

Syntax
pin touch io-object-name;

pin an I/O pin. Touch I/O can specify one of the pins IO_0
through IO_7. Multiple Touch I/O objects can be
declared.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Usage
unsigned int count;

Neuron C Reference Guide 8-47

unsigned int touch-buffer[buffer-size]; // Could be any type or structure

io_out(io-object-name, touch-buffer, count);
io_in(io-object-name, touch-buffer, count);

There are several additional support functions for the Touch I/O object. They
are:

 int touch_reset(io-object-name);

This function asserts the reset pulse and returns a (1) value if a presence
pulse was detected, or a (0) if no presence pulse was detected, or a (-1) value
if the 1-WIRE bus appears to be stuck low. The operation of this function is
controlled by several timing constants. The first is the reset pulse period,
which is 500µs. Next, the Neuron firmware releases the 1-WIRE bus and
waits for the 1-WIRE bus to return to the high state. This period is limited to
275µs, after which the touch_reset() function will return a (-1) value with
the assumption that the 1-WIRE bus is stuck low. There also is a minimum
value for this period, it must be >4.8µs @10MHz, or 9.6µs @5MHz.

Once the 1-WIRE bus has appeared to go high, the Neuron firmware waits for
the presence pulse for a period up to 80µs. If a low input level is not sensed
within this period the function returns a (0) value. Once a presence pulse is
detected the Neuron firmware then waits for the end of the presence pulse by
waiting for a high level on the bus. This period is limited to 250µs, after
which the function will again return a (-1) if the period elapses with the input
level still low. Otherwise, once the input level is high again the function
returns with a (1) value.

Note that the touch_reset() function does not return until the end of the
presence pulse has been detected. This function allows combined read and
write operations within a single eight-bit boundary. For example, a 2-bit
write many be followed by a 6-bit read. This can be accomplished with a
single call to touch_byte() with a write-data argument of 0bNN111111
where (NN) represents the 2 bits of write data and (111111) is used to
perform the 6-bit read.

 unsigned touch_byte(io-object-name, unsigned write-data);

This function sequentially writes and reads eight bits of data on the 1-WIRE
bus. It can be used for either reading or writing. For reading the write-data
argument should be all ones (0xFF), and the return value will contain the
eight bits as read from the bus. For writing the bits in the write-data
argument are placed on the 1-WIRE bus, and the return value will normally
contain those same bits.

 unsigned touch_bit(io-object-name, unsigned write-data);

This function writes and reads a single bit of data on the 1-WIRE bus. It can
be used for either reading or writing. For reading, the write-data argument
should be one (0x01), and the return value will contain the bit as read from
the bus. For writing, the bit value in the write-data argument is placed on
the 1-WIRE bus, and the return value will normally contain that same bit
value, and can be ignored. This function provides access to the same internal
process that touch_byte() calls.

8-48 I/O Objects

 int touch_first(io-object-name, search_data * sd);

 int touch_next(io-object-name, search_data * sd);

These functions execute the ROM Search algorithm as described in Book of
DS19xx Touch Memory Standards, Dallas Semiconductor, Edition 2.0. Both
functions make use of a data structure search_data_s for intermediate
storage of a bit marker and the current ROM data. This data structure is
automatically defined in Neuron C, regardless of whether a program
references the touch I/O functions.

typedef struct search_data_s {
int search_done;
int last_discrepancy;
unsigned rom_data[8];

} search_data;

A return value of TRUE indicates whether a device was found, and if so, that
the data stored at rom_data[] is valid. A FALSE return value indicates no
device found. The search_done flag is set to TRUE when there are no more
devices on the 1-WIRE bus. The last_discrepancy variable is used
internally and should not be modified.

To start a new search first call touch_first(). Then, as long as the
search_done flag is not set, call touch_next() as many times as are
required. Each call to touch_first() or touch_next() will take 41ms to
execute at 10MHz (63ms at 5MHz) when a device is being read.

 unsigned crc8(unsigned crc, unsigned new-data);

This function performs the Dallas 1-WIRE CRC-8 function on the crc and
new-data arguments, and returns the new 8-bit CRC value. You must
include <stdlib.h> to use this function.
 unsigned long crc16(unsigned long crc, unsigned long new-data);
This function performs the Dallas 1-WIRE CRC-16 function on the crc and
new-data arguments, and returns the new 16-bit CRC value. You must
include <stdlib.h> to use this function.

Neuron C Reference Guide 8-49

Example
// In this example a leveldetect input is used on the 1-WIRE
// interface in order to detect the 'presence' signal when a
// Touch Memory device appears on the bus.

#include <stdlib.h>

#define DS_READ_ROM 0x33
unsigned int id_data[8];
IO_3 input leveldetect io_twire_pres;
IO_3 touch io_twire;
. . .
when (io_in(io_twire_pres) == 1)
{

unsigned int i, crc_data;

// Reset the device using touch_reset().
// Skip if there is no device sensed.
if (touch_reset(io_twire)) {

// Send a single READ_ROM command byte:
id_data[0] = DS_READ_ROM;
io_out(io_twire, id_data, 1);
// Read the 8 byte I.D.:
io_in(io_twire, id_data, 8);
// check the crc of the I.D.:
crc_data = 0;
for (i=0; i<7; i++)

crc_data = crc8(crc_data, id_data[i]);
if (crc_data == id_data[7]) {

// Valid crc: process I.D. data here.
}

}
// Clear leveldetect input.
(void)io_in(io_twire_pres);

}

Detailed timing specifications for these operations exist and can be found in
the Neuron Chip or Smart Transceiver data book.

Triac Output TIMER/COUNTER I/O OBJECT
This I/O object type is used to control the delay of an output pulse signal with
respect to an input trigger signal. For control of AC circuits using a triac I/O
object, the sync input is typically a zero-crossing signal, and the pulse output
is the triac trigger signal. The output pulse is 25µs wide, normally low. The
pulsewidth is independent of the Neuron input clock.

Execution of this I/O object type is synchronized with the sync pin input and
may not return for up to 10ms. (The application program could thus be
delayed for as long as 10ms.)

When using the pulse output configuration, an output value of 65535 (the
overrange value) assures that no output pulse is generated. This is the
equivalent of an OFF state. When using the level output configuration, there
always will be some amount of output signal; use an output value that is
about 95% of the half-cycle period to approximate the OFF state.

8-50 I/O Objects

Syntax
pin [output] triac [pulse | level] sync (pin-nbr) [invert] [clock (const-
expr)]
 [clockedge (+)|(-)|(+-)] io-object-name;

pin an I/O pin. Triac output can specify pins IO_0 or
IO_1. If IO_0 is specified, the sync pin can be IO_4
through IO_7. If IO_1 is specified, the sync pin must
be IO_4.

sync (pin-nbr) specifies the sync pin, which is the input trigger
signal.

invert causes the output signal to be inverted, normally high.
The default output signal is normally low.

clock (const-expr) specifies a clock in the range 0 to 7, where 0 is the
fastest clock and 7 is the slowest clock. The default
(and recommended) clock for triac output is clock 7.
The io_set_clock() function can be used to change
the clock. Other clock values are as follows for a
Neuron Chip input clock of 10MHz:

Clock Pulse Delay

0 0 to 13.11ms in steps of 200 ns (0-65535)
1 0 to 26.21ms in steps of 400 ns
2 0 to 52.421ms in steps of 800 ns
3 0 to 104.86ms in steps of 1.6 µs
4 0 to 209.71ms in steps of 3.2 µs
5 0 to 419.42ms in steps of 6.4 µs
6 0 to 838.85ms in steps of 12.8 µs
7 (default) 0 to 1.677sec in steps of 25.6 µs

clockedge (+)|(-)|(+-) (+) causes the sync input to be positive-edge sensitive.

 (-) (the default) causes the sync input to be negative-
edge sensitive.

 (+-) causes the sync input to be both positive- and
negative-edge sensitive (valid on all Neuron 3120xx
Chip, all models of Neuron 3150 Chips except minor
model 0), and all Smart Transceivers. Can be used
with pulse mode only.

 Note: the clockedge (+-) option does not work with
minor model 0 of Neuron 3150 Chips. When using a
Neuron 3150 Chip or a LonBuilder emulator, the
compiler inserts code in the application that checks for
the availability of this feature. This code logs an error
if the chip does not support the feature.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Neuron C Reference Guide 8-51

[pulse | level] specifies whether the output signal produces a 25µs
pulse at the delay point, or a level, which stays on
from the delay point until the next sync input edge.

 When using the pulse output configuration the output
pulse is generated by an internal clock with a constant
period of 25.6µs (independent of the Neuron input
clock). Since the input sync edge is asynchronous
relative to the internal clock there is a jitter
associated with the pulse output relative to the input
sync edge. This jitter will span a period of 25.6µs.

Usage
unsigned long output-value;

io_out(io-object-name, output-value);

Example 1
IO_0 output triac sync (IO_5) io_dimmer_trigger;

when (...)
{

io_out(io_dimmer_trigger, 325);
// delay pulse by 8.3 ms

}

when (...)
{

io_out(io_dimmer_trigger, 650);
// delay pulse by 16.6 ms

}

when (...)
{

io_out(io_dimmer_trigger, 0); // full on
}

AC Input

IO_5 Sync input
(-clock edge)

IO_0 output
pulse signal

8.3 msec
output value

25us

Figure 8.4 Triac Output, Example 1

8-52 I/O Objects

Example 2
IO_1 output triac sync (IO_4) clockedge (+-) io_dimmer_2;
...
io_out(io_dimmer_2,325);

AC Input

IO_4 Sync input
(+ - clock edge)

IO_1 output
pulse signal

8.3 msec
output value

25 us

Figure 8.5 Triac Output, Example 2
(except for model 0 Neuron 3150 Chips)

Triggeredcount Output TIMER/COUNTER I/O OBJECT
This I/O object type is used to control an output pin to the active state and
keep it active until output_value negative edges are counted at the input
sync pin. After output_value edges have counted off, the output pin returns
to the low state.

For triggeredcount output, the data type of output_value for io_out() is an
unsigned long. An output_value of 0 forces the output signal to an
inactive state.

Syntax
pin [output] triggeredcount sync (pin-nbr)

 [invert] io-object-name [=initial-output-level] ;

pin an I/O pin. Triggeredcount output can specify pins
IO_0 or IO_1. If IO_0 is specified, the multiplexed
timer/counter is used and the sync pin can be IO_4
through IO_7. If IO_1 is specified, the dedicated
timer/counter is used and the sync pin must be IO_4.

sync (pin-nbr) specifies the sync pin, which is the counting input
signal with low pulses.

invert causes the output signal to be inverted, normally high.
By default, the output signal is normally low with
high pulses.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

initial-output-level is a constant expression, in ANSI C format for
initializers, used to set the state of the output pin of

Neuron C Reference Guide 8-53

the I/O object at initialization. The initial state may
be 0 or 1. The default initial state is 0.

In figure 8.6, an io_out() function call is executed with a count argument of
11. After 11 negative edges at the input pin, the output goes low. The delay
from the last input edge to the output falling edge is 200ns or less at a
Neuron input clock of 10MHz.

Output Pin

Sync Input Pin

io_out(device, 11);

Figure 8.6 Triggeredcount Output Object

Usage
unsigned long output-value;

io_out(io-object-name, output-value);

Example
IO_0 output triggeredcount sync (IO_4) io_cascader;

when (...)
{

io_out(io_cascader, 10);
// 1 big output pulse for 10 input pulses

}

Wiegand Input SERIAL I/O OBJECT
This I/O object type is used to transfer data from a Wiegand format data
stream source. This format encodes data as a series of pulses on two signal
lines: one which is designated as the '0' data bit signal; and another which is
designated as a '1' data bit signal. Data pulses appear exclusively of each
other and are typically spaced approximately 1ms apart. Specifications for
the duration of the pulse are typically between 50 to 100µs, but they can be
as short as 200ns with a 10MHz input clock. The inter-bit period (the period
between bit pulses) is shown in the table below:

Parameter Min Max Typical
Pulse Width 200ns 880ms 100µs
Inter-Bit Time 150µs (none) 900µs

8-54 I/O Objects

Wiegand data is asynchronous. The io_in() function must be executing
before the second bit arrives, otherwise the first bit data is lost since it then
becomes impossible to determine the order of a zero and one event sequence.

Data is read MSB first, that is, the first data bit read will be stored in the
most significant bit location of the first byte of the array when eight bits are
read into that byte. If the number of bits transferred is not a multiple of
eight, as defined by count, the last byte transferred into the array will
contain the remaining bits right justified within the byte.

For Wiegand input, one of the pins IO_0 through IO_7 may be designated as
a timeout pin. A logic one level on the timeout pin causes the Wiegand input
operation to be terminated before the specified number of bits has been
transferred. The Neuron Chip or Smart Transceiver updates the watchdog
timer while waiting for the next zero or one data bit to arrive. This timeout
input can be a one-shot timer counter output, an RC circuit, or a ~Data_valid
signal from the reader device.

The return_value, which is an unsigned short, for the io_in() function for
this object, indicates the number of bits stored into the array. Whenever the
io_in() function for this object is called it will immediately return if there is
currently no activity on the indicated I/O pins. Otherwise, the function will
continue to process input data until either count bits are stored, or until the
timeout event occurs. When the timeout event occurs the number of bits read
and stored is returned.

Syntax
pin input] wiegand timeout(pin-nbr) io-object-name;

pin an I/O pin. Wiegand input requires two adjacent pins.
The DATA 0 pin is the pin specified, and the DATA 1
pin is the following pin. The pin specification denotes
the lower-numbered pin of the pair and can be IO_0
through IO_6.

timeout (pin-nbr) specifies the timeout signal pin, in the range of IO_0
to IO_7. The Neuron firmware checks the logic level
at this pin whenever it is waiting for a pulse at either
the DATA 0 or DATA 1 pins. If a logic level 1 is
sensed, the transfer is terminated.

io-object-name is a user-specified name for the I/O object, in the ANSI
C format for variable identifiers.

Usage
unsigned int count, input-buffer[buffer-size], bit-count;

count = io_in(object-name, input-buffer, bit-count);

Neuron C Reference Guide 8-55

Example
// This application is written so that the
// Wiegand input is being polled for a majority
// of the time, breaking out and returning to the
// scheduler only periodically. This makes the
// probability of capturing the first bits of
// the input much higher since the bits arrive
// asynchronously. Timeout is from a hardware oneshot.
unsigned int wieg_array[4], breaker, nbits;
IO_2 input wiegand timeout (IO_0) io_card_data;
IO_0 output oneshot invert clock (7) io_pintimer = 1;
when(TRUE)
{

for (breaker=200; breaker; breaker--) {
io_out(io_pintimer, 19500UL);
// Store 26 bits into wieg_array
nbits = io_in(io_card_data, wieg_array, 26);
if (nbits) {

. . . // Process data just read
}

}
}

Appendix A
Syntax Summary

This appendix provides a summary of Neuron C Version 2
syntax, with some explanatory material interspersed. In
general, the syntax presentation starts with the highest, most
general level of syntactic constructs and works its way down to
the lowest, most concrete level as the appendix progresses.
The syntax is divided into sections with headers for ease of use,
with declaration syntax first, statement syntax next, and
expression syntax last.

A-2 Syntax Summary

Syntax Conventions
In this syntax section, syntactic categories (nonterminals) are indicated by
italic type, and literal words and character set members (terminals) by bold
type. In the example below, basic-net-var is a nonterminal, meaning it
represents a syntactic category, or construct, rather than a literal string of
characters to be typed. The symbols network, input, and output are
terminals, meaning they are to be typed in exactly as shown.

basic-net-var :
 network input
 network output

A colon (:) following a nonterminal introduces its definition. Alternative
definitions for a nonterminal are listed on separate, consecutive lines, except
when prefaced by the phrase “one of”, and the alternatives are then shown
separated by a vertical bar. The example above shows two alternative
definitions on separate lines. The example below shows two alternative
definitions using the “one of” notation style.

assign-op :
 one of = | |= | ^= | &= | <<= | >>=
 /= | *= | %= | += | -=

When a definition of a nonterminal has an optional component, that optional
component is shown inside square brackets, like this: [optional-component].
The following example demonstrates this concept. The square brackets are
not to be typed, and are not part of the syntax. They merely indicate that the
keyword repeating is optional, rather than required.

timer-type :
 mtimer [repeating]
 stimer [repeating]

Neuron C Reference Guide A-3

Neuron C External Declarations
The language consists of basic blocks, called “external declarations”.

Neuron-C-program :
 Neuron-C-program external-declaration
 external-declaration

The external declarations are ANSI C declarations like data and function
declarations, and Neuron C extensions like I/O object declarations, functional
block declarations, and task declarations.

external-declaration :
 ANSI-C-declaration
 Neuron-C-declaration

ANSI-C-declaration :
 ; (C language permits extra semicolons)
 data-declaration ;
 function-declaration

Neuron-C-declaration :
 task-declaration
 io-object-declaration ;
 functional-block-declaration ;
 device-property-list-declaration

A data declaration is an ANSI C variable declaration.
data-declaration :
 variable-declaration
 variable-list

A-4 Syntax Summary

Variable Declarations
The following is ANSI C variable declaration syntax.

variable-declaration-list :
 variable-declaration-list variable-declaration ;
 variable-declaration ;

variable-declaration :
 declaration-specifier-list variable-list
 declaration-specifier-list

The variable declaration can declare more than one variable in a comma-
separated list. A network variable can also optionally include a property list
declaration after the variable name (and the variable initializer, if present).

variable-list :
 variable-list , extended-variable
 extended-variable

extended-variable :
 variable nv-property-list-declaration
 variable

variable :
 declarator = variable-initializer
 declarator
variable-initializer :
 { variable-initializer-list , }
 { variable-initializer-list }
 constant-expr

variable-initializer-list :
 variable-initializer-list , variable-initializer
 variable-initializer

Neuron C Reference Guide A-5

Declaration Specifiers
The ANSI C declaration specifiers are augmented in Neuron C by adding the
connection information, the message tag specifier, configuration property
specifiers, network variable specifiers, and timer type specifiers.

declaration-specifier-list :
 declaration-specifier-list declaration-specifier
 declaration-specifier
declaration-specifier :
 timer-type
 type-specifier
 storage-class-specifier
 cv-type-qualifier
 configuration-property-specifier
 msg_tag
 net-var-types
 connection-information
type-specifier :
 type-identifier
 type-keyword
 struct-or-union-specifier
 enum-specifier

Timer Declarations
Timer objects are declared with one of the following sequences of keywords.
Timer objects are specific to Neuron C.

timer-type :
 mtimer [repeating]
 stimer [repeating]

A-6 Syntax Summary

Type Keywords
The ANSI C data type keywords may appear in any order. Floating point
types (double and float) are not supported in Neuron C.

type-keyword :
 char
 double (This keyword is reserved for future implementations)
 float (This keyword is reserved for future implementations)
 int
 long
 quad (This keyword is reserved for future implementations)
 short
 signed
 unsigned
 void

In addition to the above type keywords, the extended arithmetic library
defines two data types as structures, and these can be used as if they were
also a type-keyword. The s32_type is a signed 32-bit integer, and the
float_type is an IEEE754 single precision floating point value.

 s32_type
 float_type

Storage Classes
The ANSI C storage classes are augmented in Neuron C with the additional
classes config, eeprom, far, fastaccess, offchip, onchip, ram, system,
and uninit. The ANSI C register storage class is not supported in
Neuron C.

class-keyword :
 auto
 config
 eeprom
 extern
 far
 fastaccess
 offchip
 onchip
 ram
 register
 static
 system
 typedef
 uninit

Neuron C Reference Guide A-7

Type Qualifiers
The ANSI C language also defines type qualifiers for declarations. Although
the type qualifier volatile is not useful in Neuron C (it is ignored by the
compiler), the type qualifier const is quite important in Neuron C.

cv-type-qualifiers :
 cv-type-qualifiers cv-type-qualifier
 cv-type-qualifier

cv-type-qualifier :
 const
 volatile

Enumeration Syntax
The following is ANSI C enum type syntax.

enum-specifier :
 enum identifier { enum-value-list }
 enum { enum-value-list }
 enum identifier

enum-value-list :
 enum-const-list ,
 enum-const-list

enum-const-list :
 enum-const-list , enum-const
 enum-const

enum-const :
 variable-identifier = constant-expr
 variable-identifier

A-8 Syntax Summary

Structure/Union Syntax
The following is ANSI C struct/union type syntax.

struct-or-union-specifier :
 aggregate-keyword identifier { struct-decl-list }
 aggregate-keyword { struct-decl-list }
 aggregate-keyword identifier
aggregate-keyword :
 struct
 union
struct-decl-list :
 struct-decl-list struct-declaration
 struct-declaration
struct-declaration :
 abstract-decl-specifier-list struct-declarator-list ;
struct-declarator-list :
 struct-declarator-list , struct-declarator
 struct-declarator
struct-declarator :
 declarator
 bitfield
bitfield :
 declarator : constant-expr
 : constant-expr

Neuron C Reference Guide A-9

Configuration Property Declarations
Configuration properties are declared with one of the following sequences of
keywords. Configuration properties are specific to Neuron C, and are new to
Neuron C Version 2. The first syntax alternative is used to declare
configuration properties implemented as configuration network variables,
and the second alternative is used to declare configuration properties
implemented in configuration files.

configuration-property-specifier :
 cp [cp-info] [range-mod] (configuration NVs (CPNVs))
 cp_family [cp-info] [range-mod] (CPs implemented in files)

cp-info :
 cp_info (cp-option-list)

cp-option-list :
 cp-option-list , cp-option
 cp-option-list cp-option
 cp-option

cp-option :
 one of device_specific | manufacturing_only
 | object_disabled | offline | reset_required

range-mod :
 range_mod_string (concatenated-string-constant)

Network Variable Declarations
Network variables are declared with one of the following sequences of
keywords. Network variables are specific to Neuron C. The changeable type
network variable is new in Neuron C Version 2.

net-var-types :
 basic-net-var [net-var-modifier] [changeable-net-var]

basic-net-var :
 network input
 network output

net-var-modifier :
 one of polled | sync | synchronized

changeable-net-var :
 changeable_type

A-10 Syntax Summary

Connection Information
The connection-information feature (bind_info) is Neuron C specific. It
allows the Neuron C programmer to communicate specific options directly to
the network management tool for individual message tags and network
variables. Connection information can only be part of a declaration-specifier-
list that also contains either the msg_tag or net-var-type declaration-
specifier.

connection-information :
 bind_info (bind-info-option-list)
 bind_info ()

bind-info-option-list :
 bind-info-option-list bind-info-option
 bind-info-option

bind-info-option :
 auth (configurable-keyword)
 authenticated (configurable-keyword)
 auth
 authenticated
 bind
 nonbind
 offline
 priority (configurable-keyword)
 priority
 nonpriority (configurable-keyword)
 nonpriority
 rate-est-keyword (constant-expr)
 service-type-keyword (configurable-keyword)
 service-type-keyword
rate-est-keyword :
 max_rate_est
 rate_est

service-type-keyword :
 ackd
 unackd
 unackd_rpt

configurable-keyword :
 config
 nonconfig

Neuron C Reference Guide A-11

Declarator Syntax
The following is ANSI C declarator syntax. Pointers are not supported
within network variables.

declarator :
 * type-qualifier declarator
 * declarator
 sub_declarator

sub-declarator :
 sub-declarator array-index-declaration
 sub-declarator function-parameter-declaration
 (declarator)
 variable-identifier

array-index-declaration :
 [constant-expr]
 []

function-parameter-declaration :
 formal-parameter-declaration
 prototype-parameter-declaration

formal-parameter-declaration :
 (identifier-list)
 ()

identifier-list :
 identifier-list , variable-identifier
 variable-identifier

prototype-parameter-declaration :
 (prototype-parameter-list)
 (prototype-parameter-list , ...) (not supported in Neuron C)

prototype-parameter-list :
 prototype-parameter-list , prototype-parameter
 prototype-parameter

prototype-parameter :
 declaration-specifier-list prototype-declarator
 declaration-specifier-list

prototype-declarator :
 declarator
 abstract-declarator

A-12 Syntax Summary

Abstract Declarators
The following is ANSI C abstract declarator syntax.

abstract-declarator :
 *
 * cv-type-qualifier abstract-declarator
 * abstract-declarator
 * cv-type-qualifiers
 abstract-sub-declarator
abstract-sub-declarator :
 (abstract-declarator)
 abstract-sub-declarator ()
 abstract-sub-declarator prototype-parameter-declaration
 abstract-sub-declarator array-index-declaration()
 prototype-parameter-declaration
 array-index-declaration
abstract-type :
 abstract-decl-specifier-list abstract-declarator
 abstract-decl-specifier-list
abstract-decl-specifier-list :
 abstract-decl-specifier-list abstract-decl-specifier
 abstract-decl-specifier
abstract-decl-specifier :
 type-specifier
 cv-type-qualifier

Task Declarations
Neuron C contains task declarations. Task declarations are similar to
function declarations. A task declaration consists of a when clause list,
followed by a task. A task is a compound statement (like an ANSI C function
body).

task-declaration :
 when-clause-list task

when-clause-list :
 when-clause-list when-clause
 when-clause

when-clause :
 priority preempt_safe when when-event
 priority when when-event
 preempt_safe when when-event
 when when-event

task :
 compound-stmt

Neuron C Reference Guide A-13

Function Declarations
The following is ANSI C function declaration syntax

function-declaration :
 function-head compound-stmt

function-head :
 function-type-and-name parm-declaration-list
 function-type-and-name

function-type-and-name :
 declaration-specifier-list declarator

parm-declaration-list :
 parm-declaration-list parm-declaration
 parm-declaration

parm-declaration :
 declaration-specifier-list parm-declarator-list ;

parm-declarator-list :
 parm-declarator-list , declarator
 declarator

A-14 Syntax Summary

Conditional Events
In Neuron C, an event is an expression which may evaluate to either TRUE
or FALSE. This extends the ANSI C concept of conditional expressions
through special built-in functions that test for the presence of special Neuron
Chip firmware events. The Neuron C compiler has many useful built-in
events that cover all the common cases encountered in Neuron programming.
However, a Neuron C programmer may also create custom events by using
any parenthesized expression as an event, including one or more functional
calls, etc.

when-event :
 (reset)
 predefined-event
 parenthesized-expr
predefined-event :
 (flush_completes)
 (offline)
 (online)
 (wink)
 (complex-event)

Complex Events
All of the predefined events shown above can be used not only in the when-
clause portion of the task declaration but also in any general expression in
executable code. The complex events below use a function-call syntax,
instead of the keyword syntax of the special events above.

complex-event :
 io-event
 message-event
 net-var-event
 timer-event
io-event :
 io_update_occurs (variable-identifier)
 io_changes (variable-identifier)
 io_changes (variable-identifier) by shift-expr
 io_changes (variable-identifier) to shift-expr
message-event :
 message-event-keyword (expression)
 message-event-keyword

message-event-keyword :
 msg_arrives
 msg_completes
 msg_fails
 msg_succeeds
 resp_arrives
net-var-event :
 nv-event-keyword (net-var-identifier .. net-var-identifier)
 nv-event-keyword (variable-identifier)
 nv-event-keyword

Neuron C Reference Guide A-15

net-var-identifier :
 variable-identifier [expression]
 variable-identifier

nv-event-keyword :
 nv_update_completes
 nv_update_fails
 nv_update_occurs
 nv_update_succeeds
timer-event :
 timer_expires (variable-identifier)
 timer_expires

I/O Object Declarations

An I/O object declaration is similar to an ANSI C variable declaration. It
may contain an initialization.

io-object-declaration :
 modified-io-object-declarator variable-identifier = assign-expr
 modified-io-object-declarator variable-identifier

The I/O object declaration begins with an I/O object declarator, possibly
followed by one or more I/O object option clauses.

modified-io-object-declarator :
 io-object-declarator [io-option-list]

io-option-list :
 io-option-list io-option
 io-option

The I/O object declarator begins with a pin name, followed by the I/O object
type.

io-object-declarator :
 io-object-pin-name [io-object-direction] io-object-type

io-object-pin-name :
 one of IO_0 | IO_1 | IO_2 | IO_3 | IO_4
 IO_5 | IO_6 | IO_7 | IO_8 | IO_9 | IO_10

io-object-direction :
 one of input | output

io-object-type :
 one of bit | bitshift | byte
 dualslope
 edgedivide | edgelog
 frequency
 i2c | infrared
 leveldetect
 magcard | magtrack1 | muxbus
 neurowire | nibble
 oneshot | ontime

A-16 Syntax Summary

 parallel | period | pulsecount | pulsewidth
 quadrature | serial
 totalcount | touch | triac | triggeredcount
 wiegand

Neuron C Reference Guide A-17

I/O Options
Most I/O options only apply to a few specific object types. The detailed
reference documentation in the I/O Objects chapter of the Reference Guide
will explain each option that applies for that I/O object.

io-option :
 baud (constant-expr)
 clock (constant-expr)
 clockedge (clock-edge)
 ded
 invert
 kbaud (constant-expr)
 long
 master
 mux
 numbits (constant-expr)
 select (io-object-pin-name)
 short
 slave
 slave_b
 sync (io-object-pin-name)
 synchronized (io-object-pin-name)

The clock-edge option is specified using either the plus or the minus
character, or both characters in the case of a dual-edge clock. The dual-edge
clock (+-) is not available on minor model 0 of the Neuron 3150 Chip.

clock-edge :
 one of + | - | +-

Functional Block Declarations
The following is Neuron C syntax for functional block declarations. The
functional block is based on an FPT definition from a LONMARK device
resource file.

functional-block-declaration :
 fblock-main fblock-name-section fblock-property-list-declaration
 fblock-main fblock-name-section

fblock-main :
 fblock FPT-identifier { fblock-body }

FPT-identifier :
 variable-identifier

The body of the functional block declaration consists of a list of network
variable members that the functional block implements. At the end of the
list, the functional block declaration can optionally declare a director
function.

fblock-body :
 fblock-member-list fblock-director-declaration
 fblock-member-list

A-18 Syntax Summary

fblock-member-list :
 fblock-member-list fblock-member ;
 fblock-member ;

fblock-member :
 net-var-identifier member-implementation

member-implementation :
 implements variable-identifier
 implementation_specific (constant-expr) variable-identifier

The functional block name can specify either a scalar or a single-dimensioned
array (like a network variable declaration). The functional block can also
optionally have an external name, and this external name can either be a
string constant or a LONMARK device resource file reference.

fblock-name-section :
 fblock-name fblock-external-name
 fblock-name

fblock-name :
 variable-identifier [constant-expr]
 variable-identifier

fblock-external-name :
 external_name (concatenated-string-constant)
 external_resource_name (concatenated-string-constant)
 external_resource_name (constant-expr : constant-expr)

Neuron C Reference Guide A-19

Property List Declarations
The following is Neuron C syntax for property declarations. The property
declarations for the device, for a network variable, and for a functional block
are identical in syntax except for the introductory keyword. The keywords
was designed to be different to promote readability of the Neuron C code.
(Although a network variable or a functional block may only have at most one
property list, there may be any number of device property list declarations
throughout a program, and the lists will be merged into a single property list
for the device. This feature promotes modularity of code.)

device-property-list-declaration :
 device_properties { property-instantiation-list }

nv-property-list-declaration :
 nv_properties { property-instantiation-list }

fblock-property-list-declaration :
 fb_properties { property-instantiation-list }

The property instantiation list is a comma-separated list of one or more
property instantiations. A property instantiation uses the name of a
previously declared network variable configuration property or the name of a
previously declared configuration parameter family. The instantiation may
optionally be followed by either or both an initialization or a range-
modification, in either order.

property-instantiation-list :
 property-instantiation-list , complete-property-instantiation
 complete-property-instantiation

complete-property-instantiation :
 property-instantiation [property-initialization] [range-mod]
 property-instantiation [range-mod] [property-initialization]

property-initialization :
 = variable-initialization

property-instantiation :
 property-qualifier property-identifier

property-qualifier :
 one of global | static

property-identifier :
 net-var-identifier
 variable-identifier

A-20 Syntax Summary

Statements
The following is ANSI C statement syntax. Compound statements begin and
end with left and right braces, respectively. Compound statements contain
either a variable declaration list, a statement list, or both. The variable
declaration list, if present, must precede the statement list.

compound-stmt :
 { [variable-declaration-list] [statement-list] }

statement-list :
 statement-list statement
 statement

In the C language, there is a grammatical distinction between a complete
statement and an incomplete statement. This is basically done for one
reason, and that is to permit the grammar to unambiguously decide which if
statement goes with which else statement. An if statement without an else
is called an incomplete statement.

statement :
 complete-stmt
 incomplete-stmt

complete-stmt :
 compound-stmt
 label : complete-stmt
 break ;
 continue ;
 do statement while-clause ;
 for-head complete-stmt
 goto identifier ;
 if-else-head complete-stmt
 switch-head complete-stmt
 return ;
 return expression ;
 while-clause complete-stmt
 expression ;
 ;

incomplete-stmt :
 label : incomplete-stmt
 for-head incomplete-stmt
 if-else-head incomplete-stmt
 if-head statement
 switch-head incomplete-stmt
 while-clause incomplete-stmt

Neuron C Reference Guide A-21

These are the various pieces that make up the statement syntax from above.
label :
 case expression
 default
 identifier

if-else-head :
 if-head complete-stmt else

if-head :
 if parenthesized-expr

for-head :
 for ([expression] ; [expression] ; [expression])

switch-head :
 switch parenthesized-expr

while-clause :
 while parenthesized-expr

A-22 Syntax Summary

Expressions
The following is expression syntax.

parenthesized-expr :
 (expression)

constant-expr :
 expression

expression :
 expression , assign-expr
 assign-expr
assign-expr :
 choice-expr assign-op assign-expr
 choice-expr

assign-op :
 one of = | |= | ^= | &= | <<= | >>=
 /= | *= | %= | += | -=
choice-expr :
 logical-or-expr ? expression : choice-expr
 logical-or-expr
logical-or-expr :
 logical-or-expr || logical-and-expr
 logical-and-expr

logical-and-expr :
 logical-and-expr && bit-or-expr
 bit-or-expr

Neuron C Reference Guide A-23

bit-or-expr :
 bit-or-expr | bit-xor-expr
 bit-xor-expr

bit-xor-expr :
 bit-xor-expr ^ bit-and-expr
 bit-and-expr

bit-and-expr :
 bit-and-expr & equality-comparison
 equality-comparison
equality-comparison :
 equality-comparison == relational-comparison
 equality-comparison != relational-comparison
 relational-comparison

relational-comparison :
 relational-comparison relational-op io-change-by-to-expr
 io-change-by-to-expr

relational-op :
 one of < | <= | >= | >
io-change-by-to-expr :
 io_changes (variable-identifier) by shift-expr
 io_changes (variable-identifier) to shift-expr
 shift-expr
shift-expr :
 shift-expr shift-op additive-expr
 additive-expr

shift-op :
 one of << | >>

A-24 Syntax Summary

additive-expr :
 additive-expr add-op multiplicative-expr
 multiplicative-expr

add-op :
 one of + | -

multiplicative-expr :
 multiplicative-expr mul-op cast-expr
 cast-expr

mul-op :
 one of * | / | %

cast-expr :
 (abstract-type) cast-expr
 unary-expr

unary-expr :
 unary-op cast-expr
 sizeof unary-expr
 sizeof (abstract-type)
 predefined-event

unary-op :
 one of * | & | ! | ~ | + | - | ++ | --

postfix-expr :
 postfix-expr [expression]
 postfix-expr -> identifier
 postfix-expr . identifier
 postfix-expr ++
 postfix-expr --
 postfix-expr actual-parameters
 primary-expr

actual-parameters :
 (actual-parameter-list)
 ()

actual-parameter-list :
 actual-parameter-list , assign-expr
 assign-expr

Neuron C Reference Guide A-25

Primary Expressions, Built-in Variables,
and Built-in Functions

In addition to the ANSI C definitions of a primary expression, Neuron C adds
some built-in variables and built-in functions. Neuron C removes float-
constant from the standard list of primary expressions.

primary-expr :
 parenthesized-expr
 integer-constant
 concatenated-string-constant
 variable-identifier
 property-reference
 builtin-variables
 builtin-functions actual-parameters
 msg-call-kwd ()

concatenated-string-constant :
 concatenated-string-constant string-constant
 string-constant

property-reference :
 [postfix-expr] :: variable-identifier
 postfix-expr :: director actual-parameters
 postfix-expr :: global_index
 postfix-expr :: nv_len

builtin-variables :
 one of activate_service_led
 config_data
 cp_modifiable_value_file
 cp_modifiable_value_file_len
 cp_readonly_value_file
 cp_readonly_value_file_len
 cp_template_file | cp_template_file_len
 fblock_index_map
 input_is_new | input_value
 msg_tag_index
 nv_array_index | nv_in_addr | nv_in_index
 read_only_data | read_only_data_2
 msg-name-kwd . variable-identifier

A-26 Syntax Summary

msg-name-kwd :
 one of msg_in | msg_out | resp_in | resp_out
builtin-functions :
 one of abs | addr_table_index
 bcd2bin | bin2bcd
 eeprom_memcpy
 fblock_director
 get_fblock_count | get_nv_count
 get_tick_count
 high_byte
 io_change_init
 io_in | io_in_ready | io_in_request
 io_out | io_out_ready | io_out_request
 io_preserve_input
 io_select
 io_set_clock | io_set_direction
 is_bound
 low_byte
 make_long
 max
 memcpy | memset
 min
 nv_table_index
 poll
 propagate
 sleep
 swap_bytes
 touch_bit | touch_byte | touch_first
 touch_next | touch_reset
msg-call-kwd :
 one of msg_alloc | msg_alloc_priority
 msg_cancel | msg_free | msg_receive
 msg_send | resp_alloc | resp_cancel
 resp_free | resp_receive | resp_send

Neuron C Reference Guide A-27

Implementation Limits
The contents of the standard include file <limits.h> are given below.

#define CHAR_BIT 8
#define CHAR_MAX 127
#define CHAR_MIN (-128)
#define LONG_MAX 32767
#define LONG_MIN (-32768)
#define MB_LEN_MAX 2
#define SCHAR_MAX 127
#define SCHAR_MIN (-128)
#define UCHAR_MAX 255
#define SHRT_MAX 127
#define SHRT_MIN (-128)
#define USHRT_MAX 255
#define INT_MAX 127
#define INT_MIN (-128)
#define UINT_MAX 255
#define ULONG_MAX 65535

Appendix B
Reserved Words

This chapter lists all Neuron C Version 2 reserved words,
including the standard reserved words of the ANSI C language.

B-2 Reserved Words

Reserved Words List
The following list of reserved words includes keywords in the Neuron C
language as well as Neuron C built-in symbols. Each of these reserved words
should be used only as it is defined elsewhere in this Reference Guide. A
Neuron C programmer should avoid the use of any of these reserved words
for other purposes such as variable declarations, function definitions,
typedef names, etc.

Following each reserved word is a code indicating the usage of the particular
item. The code “(c)” indicates a keyword from the ANSI C language. Code
“(1)” indicates keywords from Neuron C Version 1 and “(2)” indicates a
keyword new to Neuron C Version 2.

The remaining reserved words are built-in symbols in the Neuron C
Compiler, many of which are found in the <echelon.h> file that is always
included at the beginning of a Neuron C compilation. Various codes are used
to indicate the type of built-in symbol.

 "(et)” indicates an enum tag

 “(st)” indicates a struct tag

 “(t)” indicates a typedef name

 “(f)” indicates a built-in function name

 “(v)” indicates a built-in variable name

 “(e)" indicates an enum value literal

 “(d)” indicates a built-in #define preprocessor symbol

 “(w)” denotes a built-in event name (as used in a when clause)

 “(p)” indicates a built-in property name (new to Neuron C Version 2)

Neuron C Reference Guide B-3

ACKD (e) ackd (1) clockedge (1)

COMM_IGNORE (e) addr_table_index (f) config (1)

FALSE (e) auth (1) config_prop (2)

IO_0 (1) authenticated (1) const (c)

IO_1 (1) auto (c) continue (c)

IO_10 (1) bank_index (f) cp (2)

IO_2 (1) baud (1) cp_family (2)

IO_3 (1) bcd (st) cp_info (2)

IO_4 (1) bcd2bin (f) cp_modifiable_value_file (v)

IO_5 (1) bin2bcd (f) cp_modifiable_value_file_len (v)

IO_6 (1) bind (1) cp_readonly_value_file (v)

IO_7 (1) bind_info (1) cp_readonly_value_file_len (v)

IO_8 (1) bit (1) cp_template_file (v)

IO_9 (1) bitshift (1) cp_template_file_len (v)

IO_DIR_IN (e) boolean (et,t) ded (1)

IO_DIR_OUT (e) break (c) default (c)

PULLUPS_ON (e) by (1) delay (1)

REQUEST (e) byte (1) device_properties (2)

TIMERS_OFF (e) case (c) device_specific (2)

TRUE (e) changeable_type (2) director (2)

UNACKD (e) char (c) do (c)

UNACKD_RPT (e) charge_pump_enable (f) double (c)

abs (f) clock (1) dualslope (1)

B-4 Reserved Words

edgedivide (1) io_direction (et,t) msg_receive (f)

edgelog (1) io_edgelog_preload (1) msg_send (f)

eeprom (1) io_in (f) msg_succeeds (w)

eeprom_memcpy (1) io_in_ready (f) msg_tag (1)

else (c) io_in_request (f) msg_tag_index (f)

enum (c) io_out (f) mtimer (1)

expand_array_info (2) io_out_ready (f) mux (1)

extern (c) io_out_request (f) muxbus (1)

external_name (2) io_preserve_input (f) network (1)

external_resource_name (2) io_select (f) neurowire (1)

far (1) io_set_clock (f) nibble (1)

fastaccess (1) io_set_direction (f) nonauth (1)

fb_properties (2) io_update_occurs (w) nonauthenticated (1)

fblock (2) is_bound (f) nonbind (1)

fblock_director (f) kbaud (1) nonconfig (1)

fblock_index_map (v) level (1) nonpriority (1)

float (c) leveldetect (1) numbits (1)

flush_completes (w) long (c) nv_array_index (v)

for (c) low_byte (f) nv_in_addr (v)

frequency (1) magcard (1) nv_in_addr_t (st,t)

get_fblock_count (f) magtrack1 (1) nv_in_index (v)

get_nv_count (f) make_long (f) nv_len (p)

global (2) manufacturing_only (2) nv_properties (2)

global_index (p) master (1) nv_table_index (f)

goto (c) max (f) nv_update_completes (w)

high_byte (f) max_rate_est (1) nv_update_fails (w)

i2c (1) memcpy (f) nv_update_occurs (w)

if (c) memset (f) nv_update_succeeds (w)

implementation_specific (2) min (f) object_disabled (2)

implements (2) msg_alloc (f) offchip (1)

infrared (1) msg_alloc_priority (f) offline (w,2)

input (1) msg_arrives (w) onchip (1)

input_is_new (v) msg_cancel (f) oneshot (1)

input_value (v) msg_completes (w) online (w)

int (c) msg_fails (w) ontime (1)

invert (1) msg_free (f) output (1)

io_change_init (f) msg_in (v) parallel (1)

io_changes (w) msg_out (v) period (1)

Neuron C Reference Guide B-5

poll (f) resp_send (f) timeout (1)

polled (1) return (c) timer_expires (w)

preempt_safe (1) reverse (f) to (1)

priority (1) scaled_delay (f) totalcount (1)

propagate (f) sd_string (1) touch (1)

pulse (1) search_data (t) touch_bit (f)

pulsecount (1) search_data_s (st) touch_byte (f)

pulsewidth (1) select (1) touch_first (f)

quad (1) serial (1) touch_next (f)

quadrature (1) service_type (et,t) touch_reset (f)

ram (1) short (c) triac (1)

random (f) signed (c) triggeredcount (1)

range_mod_string (2) sizeof (c) typedef (c)

rate_est (1) slave (1) unackd (1)

register (c) slave_b (1) unackd_rpt (1)

repeating (1) sleep (f) uninit (1)

reset (w) sleep_flags (et,t) union (c)

reset_required (2) static (c) unsigned (c)

resp_alloc (f) stimer (1) void (c)

resp_arrives (w) struct (c) volatile (c)

resp_cancel (f) swap_bytes (f) when (1)

resp_free (f) switch (c) while (c)

resp_in (v) sync (1) wiegand (1)

resp_out (v) synchronized (1) wink (1)

resp_receive (f) system (1)

Finally, and in addition to the restrictions imposed by the previous list, the
compiler automatically recognizes names of standard network variable types
(SNVT*), standard configuration property types (SCPT*), standard functional
profiles (SFPT*), as well as the user types and functional profiles applicable
to the current program ID.

The compiler does not permit any symbol to be defined starting with any of
the following prefixes: SNVT, SCPT, SFPT, UNVT, UCPT, or UFPT, unless
the #pragma names_compatible directive is present in the program.

B-6 Reserved Words

In addition to the restrictions imposed by the previous list of reserved words,
the programmer cannot use the following reserved names at all; they are part
of the compiler-firmware interface only, and are not permitted in a Neuron C
program.

_bcd2bin _magt1_input _msg_receive

_bin2bcd _magt2_input _msg_send

_bit_input _memcpy _msg_service_get

_bit_output_hi _memcpy16 _msg_service_set

_bit_output_lo1 _memcpy8 _msg_succeeds

_bit_output_lo2 _memset _msg_tag_set

_bitshift_input _memset16 _muxbus_read

_bitshift_output _memset8 _muxbus_reread

_bound_mt _msg_addr_blockget _muxbus_rewrite

_bound_nv _msg_addr_blockset _muxbus_write

_byte_input _msg_addr_get _neurowire_inv_master

_byte_output _msg_addr_set _neurowire_inv_slave

_dualslope_input _msg_alloc _neurowire_master

_dualslope_start _msg_alloc_priority _neurowire_slave

_edgelog_input _msg_arrives _nibble_input

_flush_completes _msg_cancel _nibble_output

_frequency_output _msg_auth_get _nv_array_poll

_i2c_read _msg_auth_set _nv_array_update_completes

_i2c_write _msg_code_arrives _nv_array_update_fails

_init_baud _msg_code_get _nv_array_update_occurs

_init_timer_counter1 _msg_code_set _nv_array_update_request

_init_timer_counter2 _msg_completes _nv_array_update_succeeds

_io_abort_clear _msg_data_blockget _nv_poll

_io_change_init _msg_data_blockset _nv_poll_all

_io_changes _msg_data_get _nv_update_completes

_io_changes_by _msg_data_set _nv_update_fails

_io_changes_to _msg_domain_get _nv_update_occurs

_io_direction_hi _msg_domain_set _nv_update_request

_io_direction_lo _msg_duplicate_get _nv_update_request_all

_io_input_value _msg_fails _nv_update_succeeds

_io_set_clock _msg_format_get _offline

_io_set_clock_x2 _msg_free _oneshot_output

_io_update_occurs _msg_len_get _online

_ir_input _msg_node_set _parallel_input

_leveldetect_input _msg_priority_set _parallel_input_ready

_magcard_input _msg_rcvtx_get _parallel_output

Neuron C Reference Guide B-7

_parallel_output_ready _resp_free _touch_first

_parallel_output_request _resp_receive _touch_next

_period_input _resp_send _touch_read

_pulsecount_output _select_input_fn _touch_reset

_pulsewidth_output _serial_input _touch_write

_quadrature_input _serial_output _triac_level_output

_resp_alloc _sleep _triac_pulse_output

_resp_arrives _timer_expires _wiegand_input

_resp_cancel _timer_expires_any _wink

_resp_code_set _totalize_input cp_modifiable_value_file_len_fake

_resp_data_blockset _touch_bit cp_readonly_value_file_len_fake

_resp_data_set _touch_byte cp_template_file_len_fake

	Preface
	Audience
	Content
	Related Manuals
	Typographic Conventions for Syntax
	Contents
	Neuron C Overview

	Predefined Events
	Introduction to Predefined Events
	Event Directory
	flush_completes	Event
	io_changes	Event
	io_in_ready	Event
	io_out_ready	Event
	io_update_occurs	Event
	msg_arrives	Event
	msg_completes	Event
	msg_fails	Event
	msg_succeeds	Event
	nv_update_completes	Event
	nv_update_fails	Event
	nv_update_occurs	Event
	nv_update_succeeds	Event
	offline	Event
	online	Event
	reset	Event
	resp_arrives	Event
	timer_expires	Event
	wink	Event

	Compiler Directives
	Compiler Directives

	Functions
	Introduction
	Overview of Neuron C Functions
	Execution Control
	Network Configuration
	Integer Math
	Floating-point Math
	Strings
	Utilities
	Input/Output

	Signed 32-Bit Integer Support Functions
	Binary Arithmetic Operators
	Unary Arithmetic Operators
	Comparison Operators
	Miscellaneous Signed 32-bit Functions
	Integer Conversions
	Conversion of Signed 32-bit to ASCII String
	Conversion of ASCII String to Signed 32-bit
	Signed 32-bit Performance

	Floating-point Support Functions
	Binary Arithmetic Operators
	Unary Arithmetic Operators
	Comparison Operators
	Miscellaneous Floating-point Functions
	Floating-point to/from Integer Conversions
	Conversion of Floating-point to ASCII String
	Conversion of ASCII String to Floating-point
	Floating-Point Performance

	Using the NXT Neuron€C Extended Arithmetic Translator

	Function Directory
	abs()	Built-in Function
	access_address()	Function
	access_alias()	Function
	access_domain()	Function
	access_nv()	Function
	addr_table_index()	Built-in Function
	ansi_memcpy()	Function
	ansi_memset()	Function
	application_restart()	Function
	bcd2bin()	Built-in Function
	bin2bcd()	Built-in Function
	clear_status()	Function
	clr_bit()	Function
	crc8()	Function
	crc16()	Function
	delay()	Function
	eeprom_memcpy()	Function
	error_log()	Function
	fblock_director()	Built-in Function
	Floating-point Support 	Functions
	flush()	Function
	flush_cancel()	Function
	flush_wait()	Function
	get_fblock_count()	Built-in Function
	get_nv_count()	Built-in Function
	get_tick_count()	Function
	go_offline()	Function
	go_unconfigured()	Function
	high_byte()	Built-in Function
	io_change_init()	Built-in Function
	io_edgelog_preload()	Built-in Function
	io_in()	Built-in Function
	io_in_request()	Built-in Function
	io_out()	Built-in Function
	io_out_request()	Built-in Function
	io_preserve_input()	Built-in Function
	io_select()	Built-in Function
	io_set_clock()	Built-in Function
	io_set_direction()	Built-in Function
	is_bound()	Built-in Function
	low_byte()	Built-in Function
	make_long()	Built-in Function
	max()	Built-in Function
	memccpy()	Function
	memchr()	Function
	memcmp()	Function
	memcpy()	Built-in Function
	memset()	Built-in Function
	min()	Built-in Function
	msg_alloc()	Built-in Function
	msg_alloc_priority()	Built-in Function
	msg_cancel()	Built-in Function
	msg_free()	Built-in Function
	msg_receive()	Built-in Function
	msg_send()	Built-in Function
	muldiv()	Function
	muldiv24()	Function
	muldiv24s()	Function
	muldivs()	Function
	node_reset()	Function
	nv_table_index()	Built-in Function
	offline_confirm()	Function
	poll()	Built-in Function
	post_events()	Function
	power_up()	Function
	preemption_mode()	Function
	propagate()	Built-in Function
	random()	Function
	refresh_memory()	Function
	resp_alloc()	Built-in Function
	resp_cancel()	Built-in Function
	resp_free()	Built-in Function
	resp_receive()	Built-in Function
	resp_send()	Built-in Function
	retrieve_status()	Function
	reverse()	Built-in Function
	rotate_long_left()	Function
	rotate_long_right()	Function
	rotate_short_left()	Function
	rotate_short_right()	Function
	scaled_delay()	Built-in Function
	service_pin_msg_send()	Function
	service_pin_state()	Function
	set_bit()	Function
	set_eeprom_lock()	Function
	Signed 32-bit Arithmetic Support	Functions
	sleep() 	Built-in Function
	strcat()	Function
	strchr()	Function
	strcmp()	Function
	strcpy()	Function
	strlen()	Function
	strncat()	Function
	strncmp()	Function
	strncpy()	Function
	strrchr()	Function
	swap_bytes()	Built-in Function
	timers_off()	Function
	touch_bit() 	Built-in Function
	touch_byte()	Built-in Function
	touch_first()	Built-in Function
	touch_next()	Built-in Function
	touch_reset()	Built-in Function
	tst_bit()	Function
	update_address()	Function
	update_alias() 	Function
	update_clone_domain()	Function
	update_config_data()	Function
	update_domain()	Function
	update_nv() 	Function
	watchdog_update()	Function

	Timer Declarations
	Timer Object

	Configuration Property and�Network Variable Declarations
	Introduction
	Configuration Property Declarations
	Configuration Property Modifiers (cp-modifiers)
	Configuration Property Instantiation
	Device Property Lists

	Network Variable Declarations Syntax
	Network Variable Modifiers (netvar-modifier)
	Network Variable Classes (class)
	Network Variable Types (type)
	Configuration Network Variables
	Network Variable Property Lists (nv-property-list)
	Network Variable Connection Information�(connection-info)

	Accessing Property Values from a Program

	Functional Block Declarations
	Introduction
	Functional Block Declarations Syntax
	Functional Block Property Lists (fb-property-list)

	Related Data Structures
	Accessing Members and Properties of a Functional Block from a Program

	Built-in Variables and Objects
	Introduction to Built-in Variables and Objects
	Built-in Variables
	activate_service_led	Variable
	config_data	Variable
	cp_modifiable_value_file	Variable
	cp_modifiable_value_file_len	Variable
	cp_readonly_value_file	Variable
	cp_readonly_value_file_len	Variable
	cp_template_file	Variable
	cp_template_file_len	Variable
	fblock_index_map	Variable
	input_is_new	Variable
	input_value	Variable
	msg_tag_index	Variable
	nv_array_index	Variable
	nv_in_addr	Variable
	nv_in_index	Variable
	read_only_data	Variable
	read_only_data2	Variable
	Built-in Objects
	msg_in	Object
	msg_out	Object
	resp_in 	Object
	resp_out 	Object

	I/O Objects
	I/O Objects Syntax
	Bit Input/Output	Direct I/O Object
	Bitshift Input/Output	Direct I/O Object
	Byte Input/Output	Direct I/O Object
	Dualslope Input	Timer/Counter I/O Object
	Edgedivide Output	Direct I/O Object
	Edgelog Input	Timer/Counter I/O Object
	Frequency Output	Timer/Counter I/O Object
	I2C Input/Output	Serial I/O Object
	Infrared Input	Timer/Counter I/O Object
	Leveldetect Input	Direct I/O Object
	Magcard Input 	Serial I/O Object
	MagTrack1 Input 	Direct I/O Object
	Muxbus Input/Output	Parallel I/O Object
	Neurowire Input/Output	Serial I/O Object
	Nibble Input/Output	Direct I/O Object
	Oneshot Output	Timer/Counter I/O Object
	Ontime Input	Timer/Counter I/O Object
	Parallel Input/Output	Parallel I/O Object
	Period Input	Timer/Counter I/O Object
	Pulsecount Input	Timer/Counter I/O Object
	Pulsecount Output	Timer/Counter I/O Object
	Pulsewidth Output	Timer/Counter I/O Object
	Quadrature Input 	Timer/Counter I/O Object
	Serial Input/Output	Serial I/O Object
	Totalcount Input	Timer/Counter I/O Object
	Touch Input/Output	Direct I/O Object
	Triac Output	Timer/Counter I/O Object
	Triggeredcount Output	Timer/Counter I/O Object
	Wiegand Input	Serial I/O Object

	Syntax Summary
	Syntax Conventions
	Neuron€C External Declarations
	Variable Declarations
	Declaration Specifiers
	Timer Declarations
	Type Keywords
	Storage Classes
	Type Qualifiers
	Enumeration Syntax
	Structure/Union Syntax
	Configuration Property Declarations
	Network Variable Declarations
	Connection Information

	Declarator Syntax
	Abstract Declarators

	Task Declarations
	Function Declarations
	Conditional Events
	Complex Events

	I/O Object Declarations
	I/O Options

	Functional Block Declarations
	Property List Declarations
	Statements
	Expressions
	Primary Expressions, Built-in Variables,�and Built-in Functions

	Implementation Limits

	Reserved Words
	Reserved Words List

